Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

Reference on EC 1.12.2.1 - cytochrome-c3 hydrogenase

Please use the Reference Search for a specific query.
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Kobayashi, K.; Morisawa, Y.; Ishituka, T.; Ishimoto, M.
Biochemical studies on sulfate-reducing bacteria. XIV. Enzyme levels of adenylylsulfate reductase, inorganic pyrophosphatase, sulfite reductase, hydrogenase, and adenosine triphosphatase in cells grown on sulfate, sulfite, and thiosulfate
J. Biochem.
78
1079-1085
1975
Bacteria, Desulfovibrio vulgaris, Electron
Automatic Mining of ENzyme DAta
Bingemann, R.; Klein, A.
Conversion of the central [4Fe-4S] cluster into a [3Fe-4S] cluster leads to reduced hydrogen-uptake activity of the F420-reducing hydrogenase of Methanococcus voltae
Eur. J. Biochem.
267
6612-6618
2000
Desulfomicrobium baculatum
Automatic Mining of ENzyme DAta
Odom, J.M.; Peck, H.D.
Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio
Annu. Rev. Microbiol.
38
551-592
1984
Desulfovibrio desulfuricans, Megalodesulfovibrio gigas, Desulfovibrio vulgaris, Desulfovibrio desulfuricans Norway 4, Desulfovibrio vulgaris Hildenborough
Manually annotated by BRENDA team
Lalla-Maharajh, W.V.; Hall, D.O.; Cammack, R.; Rao, K.K.
Purification and properties of the membrane-bound by hydrogenase from Desulfovibrio desulfuricans
Biochem. J.
209
445-454
1983
Desulfovibrio desulfuricans, Desulfovibrio desulfuricans Norway
Manually annotated by BRENDA team
Yagi, T.; Honya, M.; Tamiya, N.
Purification and properties of hydrogenases of different origins
Biochim. Biophys. Acta
153
699-705
1968
Desulfovibrio desulfuricans
Manually annotated by BRENDA team
Yagi, T.; Kimura, K.; Daidoji, H.; Sakai, F.; Tamura, S.; Inokuchi, H.
Properties of purified hydrogenase from the particulate fraction of Desulfovibrio vulgaris, Miyazaki
J. Biochem.
79
661-671
1976
Desulfovibrio vulgaris, Desulfovibrio vulgaris Miyazaki
Manually annotated by BRENDA team
Grande, H.J.; van Berkel-Arts, A.; Bregh, J.; van Dijk, K.; Veeger, C.
Kinetic properties of hydrogenase isolated from Desulfovibrio vulgaris (Hildenborough)
Eur. J. Biochem.
131
81-88
1983
Desulfovibrio vulgaris
Manually annotated by BRENDA team
Castro, M.J.M.; Cabral, J.M.S.
Kinetic studies of hydrogenase in AOT reversed micelles
Enzyme Microb. Technol.
11
6-11
1989
Megalodesulfovibrio gigas
-
Manually annotated by BRENDA team
Castro, M.J.M.; Cabral, J.M.S.
Stability of hydrogenase in AOT reversed micelles
Enzyme Microb. Technol.
11
668-672
1989
Megalodesulfovibrio gigas
-
Manually annotated by BRENDA team
Higuchi, Y.; Yasuoka, N.; Kakudo, M.; Katsube, Y.; Yagi, T.; Inokuchi, H.
Single crystals of hydrogenase from Desulfovibrio vulgaris Miyazaki F
J. Biol. Chem.
262
2823-2825
1987
Desulfovibrio vulgaris
Manually annotated by BRENDA team
Rieder, R.; Cammack, R.; Hall, D.O.
Purification and properties of the soluble hydrogenase from Desulfovibrio desulfuricans (strain Norway 4)
Eur. J. Biochem.
145
637-643
1984
Desulfovibrio desulfuricans, Desulfovibrio desulfuricans Norway 4
Manually annotated by BRENDA team
Fritz, G.; Griesshaber, D.; Seth, O.; Kroneck, P.M.
Nonaheme cytochrome c, a new physiological electron acceptor for [Ni,Fe] hydrogenase in the sulfate-reducing bacterium Desulfovibrio desulfuricans Essex: primary sequence, molecular parameters, and redox properties
Biochemistry
40
1317-1324
2001
Desulfovibrio desulfuricans, Desulfovibrio desulfuricans Essex
Manually annotated by BRENDA team
Gogotov, I.N.
Hydrogenase of purple bacteria: properties and regulation of synthesis
Arch. Microbiol.
140
86-90
1984
Thiocapsa roseopersicina, Thiocapsa roseopersicina Bbs
-
Manually annotated by BRENDA team
Adams, M.W.W.; Hall, D.O.
Solubilization and partial purification of the membrane-bound hydrogenase of Escherichia coli
Biochem. Soc. Trans.
6
1339-1341
1978
Escherichia coli
Manually annotated by BRENDA team
Aubert, C.; Brugna, M.; Dolla, A.; Bruschi, M.; Giudici-Orticoni, M.T.
A sequential electron transfer from hydrogenases to cytochromes in sulfate-reducing bacteria
Biochim. Biophys. Acta
1476
85-92
2000
BRENDA: Desulfomicrobium norvegicum, Desulfovibrio vulgaris, Desulfovibrio vulgaris Hildenborough
Textmining: Electron
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
De Luca, G.; De Philip, P.; Dermoun, Z.; Rousset, M.; Vermegljo, A.
Reduction of technetium(VII) by Desulfovibrio fructosovorans is mediated by the nickel-iron hydrogenase
Appl. Environ. Microbiol.
67
4583-4587
2001
Solidesulfovibrio fructosivorans
Manually annotated by BRENDA team
Eng, L.H.; Lewin, M.B.M.; Neujahr, H.Y.
Kinetic properties of the periplasmic hydrogenase from Desulfovibrio desulfuricans NCIMB 8372 and use in photosensitized hydrogen-production
J. Chem. Technol. Biotechnol.
56
317-324
1993
Desulfovibrio desulfuricans
-
Manually annotated by BRENDA team
Higuchi, Y.; Yagi, T.
Liberation of hydrogen sulfide during the catalytic action of Desulfovibrio hydrogenase under the atmosphere of hydrogen
Biochem. Biophys. Res. Commun.
255
295-299
1999
BRENDA: Desulfovibrio vulgaris, Desulfovibrio vulgaris Miyazaki
Textmining: Desulfovibrio
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Zöphel, A.; Kennedy, M.C.; Beinert, H.; Kroneck, P.M.H.
Investigations on microbial sulfur respiration. Isolation, purification, and characterization of cellular components from Spirillum 5175
Eur. J. Biochem.
195
849-856
1991
Electron
Automatic Mining of ENzyme DAta
Burgdorf, T.; De Lacey, A.L.; Friedrich, B.
Functional analysis by site-directed mutagenesis of the NAD+-reducing hydrogenase from Ralstonia eutropha
J. Bacteriol.
184
6280-6288
2002
Cupriavidus necator
Automatic Mining of ENzyme DAta
Fauque, G.; Czechowski, M.; Berlier, Y.M.; Lespinat, P.A.; LeGall, J.; Moura, J.J.G.
Partial purification and characterization of the first hydrogenase isolated from a thermophilic sulfate-reducing bacterium
Biochem. Biophys. Res. Commun.
184
1256-1260
1992
bacterium, Thermodesulfobacterium thermophilum
Automatic Mining of ENzyme DAta
Foerster, S.; Stein, M.; Brecht, M.; Ogata, H.; Higuchi, Y.; Lubitz, W.
Single crystal EPR studies of the reduced active site of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F
J. Am. Chem. Soc.
125
83-93
2003
Desulfovibrio vulgaris str. 'Miyazaki F'
Automatic Mining of ENzyme DAta
Hatchikian, E.C.; Forget, N.; Bernadac, A.; Alazard, D.; Ollivier, B.
Involvement of a single periplasmic hydrogenase for both hydrogen uptake and production in some Desulfovibrio species
Res. Microbiol.
146
129-141
1995
Desulfovibrio vulgaris Groningen, Desulfovibrio vulgaris, Electron
Automatic Mining of ENzyme DAta
Hatchikian, E.C.; Forget, N.; Fernandez, V.M.; Williams, R.; Cammack, R.
Further characterization of the [iron]-hydrogenase from Desulfovibrio desulfuricans ATCC 7757
Eur. J. Biochem.
209
357-365
1992
Desulfovibrio desulfuricans, Desulfovibrio vulgaris str. Hildenborough
Automatic Mining of ENzyme DAta
Meuer, J.; Bartoschek, S.; Koch, J.; Kunkel, A.; Hedderich, R.
Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri
Eur. J. Biochem.
265
325-335
1999
Methanosarcina barkeri
Automatic Mining of ENzyme DAta
Garcin, E.; Vernede, X.; Hatchikian, E.C.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J.C.
The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center
Structure
7
557-566
1999
Desulfomicrobium baculatum
Automatic Mining of ENzyme DAta
Romao, C.V.; Pereira, I.A.; Xavier, A.V.; LeGall, J.; Teixeira, M.
Characterization of the [NiFe] hydrogenase from the sulfate reducer Desulfovibrio vulgaris Hildenborough
Biochem. Biophys. Res. Commun.
240
75-79
1997
Desulfovibrio vulgaris str. Hildenborough
Automatic Mining of ENzyme DAta
Malki, S.; De Luca, G.; Fardeau, M.L.; Rousset, M.; Belaich, J.P.; Dermoun, Z.
Physiological characteristics and growth behavior of single and double hydrogenase mutants of Desulfovibrio fructosovorans
Arch. Microbiol.
167
38-45
1997
Desulfovibrio fructosivorans
Automatic Mining of ENzyme DAta
Malki, S.; Saimmaime, I.; De Luca, G.; Rousset, M.; Dermoun, Z.; Belaich, J.P.
Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans
J. Bacteriol.
177
2628-2636
1995
Desulfovibrio fructosivorans, Desulfovibrio vulgaris str. Hildenborough
Automatic Mining of ENzyme DAta
Happe, R.P.; Roseboom, W.; Egert, G.; Friedrich, C.G.; Massanz, C.; Friedrich, B.; Albracht, S.P.
Unusual FTIR and EPR properties of the H2-activating site of the cytoplasmic NAD-reducing hydrogenase from Ralstonia eutropha
FEBS Lett.
466
259-263
2000
Cupriavidus necator, Alcaligenes
Automatic Mining of ENzyme DAta
Porthun, A.; Bernhard, M.; Friedrich, B.
Expression of a functional NAD-reducing [NiFe] hydrogenase from the gram-positive Rhodococcus opacus in the gram-negative Ralstonia eutropha
Arch. Microbiol.
177
159-166
2002
Rhodococcus opacus, Cupriavidus necator, Rhodococcus opacus MR11
Automatic Mining of ENzyme DAta
Payne, R.B.; Gentry, D.M.; Rapp-Giles, B.J.; Casalot, L.; Wall, J.D.
Uranium reduction by Desulfovibrio desulfuricans strain G20 and a cytochrome c3 mutant
Appl. Environ. Microbiol.
68
3129-3132
2002
Desulfovibrio desulfuricans, Desulfovibrio vulgaris, Desulfovibrio vulgaris Hildenborough
Manually annotated by BRENDA team
Guiral, M.; Leroy, G.; Bianco, P.; Gallice, P.; Guigliarelli, B.; Bruschi, M.; Nitschke, W.; Giudici-Orticoni, M.T.
Interaction and electron transfer between the high molecular weight cytochrome and cytochrome c3 from Desulfovibrio vulgaris Hildenborough: kinetic, microcalorimetric, EPR and electrochemical studies
Biochim. Biophys. Acta
1723
45-54
2005
BRENDA: Desulfovibrio vulgaris, Desulfovibrio vulgaris Hildenborough
Textmining: Electron
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Leul, M.; Mohapatra, A.; Sellstedt, A.
Biodiversity of hydrogenases in Frankia
Curr. Microbiol.
50
17-23
2005
Frankia
Automatic Mining of ENzyme DAta
Soboh, B.; Linder, D.; Hedderich, R.
Purification and catalytic properties of a CO-oxidizing:H2-evolving enzyme complex from Carboxydothermus hydrogenoformans
Eur. J. Biochem.
269
5712-5721
2002
Electron
Automatic Mining of ENzyme DAta
ElAntak, L.; Morelli, X.; Bornet, O.; Hatchikian, C.; Czjzek, M.; Dolla, A.; Guerlesquin, F.
The cytochrome c3-[Fe]-hydrogenase electron-transfer complex: structural model by NMR restrained docking
FEBS Lett.
548
1-4
2003
BRENDA: Desulfovibrio desulfuricans
Textmining: Desulfovibrio vulgaris str. Hildenborough, Bacteria, Electron
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Van der Linden, E.; Burgdorf, T.; Bernhard, M.; Bleijlevens, B.; Friedrich, B.; Albracht, S.P.
The soluble [NiFe]-hydrogenase from Ralstonia eutropha contains four cyanides in its active site, one of which is responsible for the insensitivity towards oxygen
J. Biol. Inorg. Chem.
9
616-626
2004
Cupriavidus necator
Automatic Mining of ENzyme DAta
Soboh, B.; Linder, D.; Hedderich, R.
A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis
Microbiology
150
2451-2463
2004
bacterium, Caldanaerobacter subterraneus subsp. tengcongensis, Methanosarcina barkeri
Automatic Mining of ENzyme DAta
Bento, I.; Matias, P.M.; Baptista, A.M.; da Costa, P.N.; van Dongen, W.M.; Saraiva, L.M.; Schneider, T.R.; Soares, C.M.; Carrondo, M.A.
Molecular basis for redox-Bohr and cooperative effects in cytochrome c3 from Desulfovibrio desulfuricans ATCC 27774: crystallographic and modeling studies of oxidized and reduced high-resolution structures at pH 7.6
Proteins
54
135-152
2004
Desulfovibrio desulfuricans
Manually annotated by BRENDA team
Chardin, B.; Giudici-Orticoni, M.T.; De Luca, G.; Guigliarelli, B.; Bruschi, M.
Hydrogenases in sulfate-reducing bacteria function as chromate reductase
Appl. Microbiol. Biotechnol.
63
315-321
2003
Desulfovibrio vulgaris
Automatic Mining of ENzyme DAta
Rodrigues, R.; Valente, F.M.A.; Pereira, I.A.C.; Oliveira, S.; Rodrigues-Pousada, C.
A novel membrane-bound Ech [NiFe] hydrogenase in Desulfovibrio gigas
Biochem. Biophys. Res. Commun.
306
366-375
2003
Desulfovibrio gigas
Automatic Mining of ENzyme DAta
Mishra, J.; Khurana, S.; Kumar, N.; Ghosh, A.K.; Das, D.
Molecular cloning, characterization, and overexpression of a novel [Fe]-hydrogenase isolated from a high rate of hydrogen producing Enterobacter cloacae IIT-BT 08
Biochem. Biophys. Res. Commun.
324
679-685
2004
Enterobacter cloacae IIT-BT 08, Bacteria
Automatic Mining of ENzyme DAta
George, S.J.; Kurkin, S.; Thorneley, R.N.; Albracht, S.P.
Reactions of H2, CO, and O2 with active [NiFe]-hydrogenase from Allochromatium vinosum. A stopped-flow infrared study
Biochemistry
43
6808-6819
2004
Allochromatium vinosum
Automatic Mining of ENzyme DAta
Jones, A.K.; Lamle, S.E.; Pershad, H.R.; Vincent, K.A.; Albracht, S.P.; Armstrong, F.A.
Enzyme electrokinetics: electrochemical studies of the anaerobic interconversions between active and inactive states of Allochromatium vinosum [NiFe]-hydrogenase
J. Am. Chem. Soc.
125
8505-8514
2003
Allochromatium vinosum
Automatic Mining of ENzyme DAta
Lamle, S.E.; Albracht, S.P.; Armstrong, F.A.
The mechanism of activation of a [NiFe]-hydrogenase by electrons, hydrogen, and carbon monoxide
J. Am. Chem. Soc.
127
6595-6604
2005
Allochromatium vinosum
Automatic Mining of ENzyme DAta
Dementin, S.; Burlat, B.; De Lacey, A.L.; Pardo, A.; Adryanczyk-Perrier, G.; Guigliarelli, B.; Fernandez, V.M.; Rousset, M.
A Glutamate is the essential proton transfer gate during the catalytic cycle of the [NiFe] hydrogenase
J. Biol. Chem.
279
10508-10513
2004
Desulfovibrio fructosivorans
Automatic Mining of ENzyme DAta
Agrawal, A.G.; Voordouw, G.; Gaertner, W.
Sequential and structural analysis of [NiFe]-hydrogenase-maturation proteins from Desulfovibrio vulgaris Miyazaki F
Antonie van Leeuwenhoek
90
281-290
2006
Desulfovibrio vulgaris str. 'Miyazaki F'
Automatic Mining of ENzyme DAta
Pereira, P.M.; Teixeira, M.; Xavier, A.V.; Louro, R.O.; Pereira, I.A.
The Tmc complex from Desulfovibrio vulgaris hildenborough is involved in transmembrane electron transfer from periplasmic hydrogen oxidation
Biochemistry
45
10359-10367
2006
Desulfovibrio vulgaris, Desulfovibrio vulgaris Hildenborough
Manually annotated by BRENDA team
Yahata, N.; Saitoh, T.; Takayama, Y.; Ozawa, K.; Ogata, H.; Higuchi, Y.; Akutsu, H.
Redox interaction of cytochrome c3 with [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F
Biochemistry
45
1653-1662
2006
BRENDA: Desulfovibrio vulgaris, Desulfovibrio vulgaris Miyazaki F
Textmining: Desulfovibrio vulgaris str. 'Miyazaki F', Electron
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Vignais, P.M.
H/D exchange reactions and mechanistic aspects of the hydrogenases
Coord. Chem. Rev.
249
1677-1690
2005
Desulfovibrio vulgaris, Desulfovibrio vulgaris Miyazaki
-
Manually annotated by BRENDA team
Buhrke, T.; Lenz, O.; Krauss, N.; Friedrich, B.
Oxygen tolerance of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha H16 is based on limited access of oxygen to the active site
J. Biol. Chem.
280
23791-23796
2005
Cupriavidus necator H16
Automatic Mining of ENzyme DAta
Valente, F.M.; Oliveira, A.S.; Gnadt, N.; Pacheco, I.; Coelho, A.V.; Xavier, A.V.; Teixeira, M.; Soares, C.M.; Pereira, I.A.
Hydrogenases in Desulfovibrio vulgaris Hildenborough: structural and physiologic characterisation of the membrane-bound [NiFeSe] hydrogenase
J. Biol. Inorg. Chem.
10
667-682
2005
BRENDA: Desulfovibrio vulgaris, Desulfovibrio vulgaris Hildenborough
Textmining: Desulfovibrio vulgaris str. Hildenborough, Desulfomicrobium baculatum, Electron
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
van der Linden, E.; Burgdorf, T.; de Lacey, A.L.; Buhrke, T.; Scholte, M.; Fernandez, V.M.; Friedrich, B.; Albracht, S.P.
An improved purification procedure for the soluble [NiFe]-hydrogenase of Ralstonia eutropha: new insights into its (in)stability and spectroscopic properties
J. Biol. Inorg. Chem.
11
247-260
2006
Cupriavidus necator
Automatic Mining of ENzyme DAta
Schroeder, O.; Bleijlevens, B.; de Jongh, T.E.; Chen, Z.; Li, T.; Fischer, J.; Foerster, J.; Friedrich, C.G.; Bagley, K.A.; Albracht, S.P.; Lubitz, W.
Characterization of a cyanobacterial-like uptake [NiFe] hydrogenase: EPR and FTIR spectroscopic studies of the enzyme from Acidithiobacillus ferrooxidans
J. Biol. Inorg. Chem.
12
212-233
2007
Acidithiobacillus ferrooxidans
Automatic Mining of ENzyme DAta
Long, M.; Liu, J.; Chen, Z.; Bleijlevens, B.; Roseboom, W.; Albracht, S.P.
Characterization of a HoxEFUYH type of [NiFe] hydrogenase from Allochromatium vinosum and some EPR and IR properties of the hydrogenase module
J. Biol. Inorg. Chem.
12
62-78
2007
Allochromatium vinosum, Thermus thermophilus, Clostridium pasteurianum
Automatic Mining of ENzyme DAta
Kutty, R.; Bennett, G.N.
Studies on inhibition of transformation of 2,4,6-trinitrotoluene catalyzed by Fe-only hydrogenase from Clostridium acetobutylicum
J. Ind. Microbiol. Biotechnol.
33
368-376
2006
Clostridium acetobutylicum, Transformation, Clostridium acetobutylicum ATCC 824
Automatic Mining of ENzyme DAta
Pieulle, L.; Morelli, X.; Gallice, P.; Lojou, E.; Barbier, P.; Czjzek, M.; Bianco, P.; Guerlesquin, F.; Hatchikian, E.C.
The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway
J. Mol. Biol.
354
73-90
2005
Desulfocurvibacter africanus
Manually annotated by BRENDA team
Agrawal, A.G.; van Gastel, M.; Gaertner, W.; Lubitz, W.
Hydrogen bonding affects the [NiFe] active site of Desulfovibrio vulgaris Miyazaki F hydrogenase: a hyperfine sublevel correlation spectroscopy and density functional theory study
J. Phys. Chem. B
110
8142-8150
2006
Desulfovibrio vulgaris str. 'Miyazaki F', Electron
Automatic Mining of ENzyme DAta
Zhang, J.W.; Leach, M.R.; Zamble, D.B.
The peptidyl-prolyl isomerase activity of SlyD is not required for maturation of Escherichia coli hydrogenase
J. Bacteriol.
189
7942-7944
2007
Escherichia coli
Automatic Mining of ENzyme DAta
Yang, F.; Hu, W.; Xu, H.; Li, C.; Xia, B.; Jin, C.
Solution structure and backbone dynamics of an endopeptidase HycI from Escherichia coli: implications for mechanism of the [NiFe] hydrogenase maturation
J. Biol. Chem.
282
3856-3863
2007
Escherichia coli, Escherichia coli (P0AEV9)
Automatic Mining of ENzyme DAta
Arai, T.; Watanabe, S.; Matsumi, R.; Atomi, H.; Imanaka, T.; Miki, K.
Crystallization and preliminary X-ray crystallographic study of [NiFe]-hydrogenase maturation factor HypE from Thermococcus kodakaraensis KOD1
Acta Crystallogr. Sect. F
63
765-767
2007
Thermococcus kodakarensis KOD1
Automatic Mining of ENzyme DAta
Kellers, P.; Ogata, H.; Lubitz, W.
Purification, crystallization and preliminary X-ray analysis of the membrane-bound [NiFe] hydrogenase from Allochromatium vinosum
Acta Crystallogr. Sect. F
64
719-722
2008
Allochromatium vinosum, bacterium
Automatic Mining of ENzyme DAta
Park, H.S.; Lin, S.; Voordouw, G.
Ferric iron reduction by Desulfovibrio vulgaris Hildenborough wild type and energy metabolism mutants
Antonie van Leeuwenhoek
93
79-85
2007
BRENDA: Desulfovibrio vulgaris, Desulfovibrio vulgaris Hildenborough
Textmining: Desulfovibrio vulgaris str. Hildenborough, Electron
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Hong, Y.G.; Guo, J.; Sun, G.P.
Identification of an uptake hydrogenase for hydrogen-dependent dissimilatory azoreduction by Shewanella decolorationis S12
Appl. Microbiol. Biotechnol.
80
517-524
2008
Shewanella decolorationis
Automatic Mining of ENzyme DAta
Long, H.; Chang, C.H.; King, P.W.; Ghirardi, M.L.; Kim, K.
Brownian dynamics and molecular dynamics study of the association between hydrogenase and ferredoxin from Chlamydomonas reinhardtii
Biophys. J.
95
3753-3766
2008
Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Marshall, M.J.; Plymale, A.E.; Kennedy, D.W.; Shi, L.; Wang, Z.; Reed, S.B.; Dohnalkova, A.C.; Simonson, C.J.; Liu, C.; Saffarini, D.A.; Romine, M.F.; Zachara, J.M.; Beliaev, A.S.; Fredrickson, J.K.
Hydrogenase- and outer membrane c-type cytochrome-facilitated reduction of technetium(VII) by Shewanella oneidensis MR-1
Environ. Microbiol.
10
125-136
2008
Shewanella oneidensis, Shewanella oneidensis MR-1 / ATCC 700550
Manually annotated by BRENDA team
Forzi, L.; Hellwig, P.; Thauer, R.K.; Sawers, R.G.
The CO and CN(-) ligands to the active site Fe in [NiFe]-hydrogenase of Escherichia coli have different metabolic origins
FEBS Lett.
581
3317-3321
2007
Escherichia coli
Automatic Mining of ENzyme DAta
Lenz, O.; Zebger, I.; Hamann, J.; Hildebrandt, P.; Friedrich, B.
Carbamoylphosphate serves as the source of CN(-), but not of the intrinsic CO in the active site of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha
FEBS Lett.
581
3322-3326
2007
Cupriavidus necator, Escherichia coli, Cupriavidus necator H16
Automatic Mining of ENzyme DAta
Valente, F.M.; Pereira, P.M.; Venceslau, S.S.; Regalla, M.; Coelho, A.V.; Pereira, I.A.
The [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough is a bacterial lipoprotein lacking a typical lipoprotein signal peptide
FEBS Lett.
581
3341-3344
2007
BRENDA: Desulfovibrio vulgaris, Desulfovibrio vulgaris Hildenborough
Textmining: Desulfovibrio vulgaris str. Hildenborough
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Rangarajan, E.S.; Asinas, A.; Proteau, A.; Munger, C.; Baardsnes, J.; Iannuzzi, P.; Matte, A.; Cygler, M.
Structure of [NiFe] hydrogenase maturation protein HypE from Escherichia coli and its interaction with HypF
J. Bacteriol.
190
1447-1458
2008
Escherichia coli
Automatic Mining of ENzyme DAta
Vogt, S.; Lyon, E.J.; Shima, S.; Thauer, R.K.
The exchange activities of [Fe] hydrogenase (iron-sulfur-cluster-free hydrogenase) from methanogenic archaea in comparison with the exchange activities of [FeFe] and [NiFe] hydrogenases
J. Biol. Inorg. Chem.
13
97-106
2008
Archaea, Escherichia coli, Electron
Automatic Mining of ENzyme DAta
Iida, S.; Asakura, N.; Tabata, K.; Okura, I.; Kamachi, T.
Role of positive charge of lysine residue on cytochrome c3 for electrostatic interaction with hydrogenase
J. Porphyr. Phthalocyanines
11
66-73
2007
Desulfovibrio vulgaris
-
Manually annotated by BRENDA team
Watanabe, S.; Matsumi, R.; Arai, T.; Atomi, H.; Imanaka, T.; Miki, K.
Crystal structures of [NiFe] hydrogenase maturation proteins HypC, HypD, and HypE: insights into cyanation reaction by thiol redox signaling
Mol. Cell
27
29-40
2007
insertion sequences
Automatic Mining of ENzyme DAta
Teixeira, V.H.; Soares, C.M.; Baptista, A.M.
Proton pathways in a [NiFe]-hydrogenase: A theoretical study
Proteins
70
1010-1022
2008
BRENDA: Megalodesulfovibrio gigas
Textmining: Desulfovibrio gigas
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Fdez Galvan, I.; Volbeda, A.; Fontecilla-Camps, J.C.; Field, M.J.
A QM/MM study of proton transport pathways in a [NiFe] hydrogenase
Proteins
73
195-203
2008
Desulfovibrio fructosivorans
Automatic Mining of ENzyme DAta
Maltempi de Souza, E.; de Oliveira Pedrosa, F.; Wassem, R.; Ford, C.M.; Yates, M.G.
Genes involved in Sec-independent membrane targeting of hydrogenase in Azotobacter chroococcum
Res. Microbiol.
158
272-278
2007
Azotobacter chroococcum, Azotobacter chroococcum MCD1
Manually annotated by BRENDA team
Marques, M.; Coelho, R.; Pereira, I.A.; Matias, P.M.
Purification, crystallization and preliminary crystallographic analysis of the [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough
Acta Crystallogr. Sect. F
65
920-922
2009
Desulfovibrio vulgaris str. Hildenborough
Automatic Mining of ENzyme DAta
Rashamuse, K.; Mutambanengwe, C.; Whiteley, C.
Enzymatic recovery of platinum (IV) from industrial wastewater using a biosulphidogenic hydrogenase
Afr. J. Biotechnol.
7
1087-1095
2008
Bacteria
-
Manually annotated by BRENDA team
Xing, D.; Ren, N.; Rittmann, B.
Genetic diversity of hydrogen-producing bacteria in an acidophilic ethanol-H2-coproducing system, analyzed using the [Fe]-hydrogenase gene
Appl. Environ. Microbiol.
74
1232-1239
2008
Bacteria
Automatic Mining of ENzyme DAta
Caffrey, S.M.; Park, H.S.; Been, J.; Gordon, P.; Sensen, C.W.; Voordouw, G.
Gene expression by the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough grown on an iron electrode under cathodic protection conditions
Appl. Environ. Microbiol.
74
2404-2413
2008
Desulfovibrio vulgaris str. Hildenborough (Q06173), Desulfovibrio vulgaris str. Hildenborough
Manually annotated by BRENDA team
Dias, A.V.; Mulvihill, C.M.; Leach, M.R.; Pickering, I.J.; George, G.N.; Zamble, D.B.
Structural and biological analysis of the metal sites of Escherichia coli hydrogenase accessory protein HypB
Biochemistry
47
11981-11991
2008
Bacteria
Automatic Mining of ENzyme DAta
Stripp, S.; Sanganas, O.; Happe, T.; Haumann, M.
The structure of the active site H-cluster of [FeFe] hydrogenase from the green alga Chlamydomonas reinhardtii studied by X-ray absorption spectroscopy
Biochemistry
48
5042-5049
2009
Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Mansure, J.J.; Hallenbeck, P.C.
Desulfovibrio vulgaris Hildenborough HydE and HydG interact with the HydA subunit of the [FeFe] hydrogenase
Biotechnol. Lett.
30
1765-1769
2008
Desulfovibrio vulgaris str. Hildenborough, Desulfovibrio vulgaris
Automatic Mining of ENzyme DAta
Li, X.; Luo, Q.; Wofford, N.Q.; Keller, K.L.; McInerney, M.J.; Wall, J.D.; Krumholz, L.R.
A molybdopterin oxidoreductase is involved in H2 oxidation in Desulfovibrio desulfuricans G20
J. Bacteriol.
191
2675-2682
2009
Desulfovibrio desulfuricans, Desulfovibrio desulfuricans G20
Manually annotated by BRENDA team
Walker, C.B.; He, Z.; Yang, Z.K.; Ringbauer, J.A.; He, Q.; Zhou, J.; Voordouw, G.; Wall, J.D.; Arkin, A.P.; Hazen, T.C.; Stolyar, S.; Stahl, D.A.
The electron transfer system of syntrophically grown Desulfovibrio vulgaris
J. Bacteriol.
191
5793-5801
2009
Desulfovibrio vulgaris str. Hildenborough (Q06173)
Manually annotated by BRENDA team
Saggu, M.; Zebger, I.; Ludwig, M.; Lenz, O.; Friedrich, B.; Hildebrandt, P.; Lendzian, F.
Spectroscopic insights into the oxygen-tolerant membrane-associated [NiFe] hydrogenase of Ralstonia eutropha H16
J. Biol. Chem.
284
16264-16276
2009
Cupriavidus necator H16
Automatic Mining of ENzyme DAta
Ludwig, M.; Schubert, T.; Zebger, I.; Wisitruangsakul, N.; Saggu, M.; Strack, A.; Lenz, O.; Hildebrandt, P.; Friedrich, B.
Concerted action of two novel auxiliary proteins in assembly of the active site in a membrane-bound [NiFe] hydrogenase
J. Biol. Chem.
284
2159-2168
2009
Cupriavidus necator H16
Automatic Mining of ENzyme DAta
Germer, F.; Zebger, I.; Saggu, M.; Lendzian, F.; Schulz, R.; Appel, J.
Overexpression, isolation and spectroscopic characterization of the bidirectional [NiFe]-hydrogenase from Synechocystis sp. PCC 6803
J. Biol. Chem.
284
36462-36472
2009
Synechocystis sp.
Automatic Mining of ENzyme DAta
Vargas, W.A.; Weyman, P.D.; Tong, Y.; Smith, H.O.; Xu, Q.
A [NiFe]-hydrogenase from Alteromonas macleodii with unusual stability in the presence of oxygen and high temperature
Appl. Environ. Microbiol.
77
1990-1998
2011
Alteromonas macleodii, bacterium
Automatic Mining of ENzyme DAta
Paixao, V.B.; Vis, H.; Turner, D.L.
Redox linked conformational changes in cytochrome c3 from Desulfovibrio desulfuricans ATCC 27774
Biochemistry
49
9620-9629
2010
Desulfovibrio desulfuricans
Manually annotated by BRENDA team
Constant, P.; Chowdhury, S.P.; Pratscher, J.; Conrad, R.
Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase
Environ. Microbiol.
12
821-829
2010
Streptomycetales
Automatic Mining of ENzyme DAta
Worm, P.; Stams, A.J.; Cheng, X.; Plugge, C.M.
Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei
Microbiology
157
280-289
2011
Methanospirillum hungatei, Syntrophobacter fumaroxidans
Automatic Mining of ENzyme DAta
Verhagen, M.; Adams, M.
Fe-only hydrogenase from Thermotoga maritima
Methods Enzymol.
331
216-226
2001
Thermotoga maritima
Automatic Mining of ENzyme DAta
Chandrayan, S.K.; McTernan, P.M.; Hopkins, R.C.; Sun, J.; Jenney, F.E.; Adams, M.W.
Engineering hyperthermophilic archaeon Pyrococcus furiosus to overproduce its cytoplasmic [NiFe]-hydrogenase
J. Biol. Chem.
287
3257-3264
2012
Pyrococcus furiosus, archaeon
Automatic Mining of ENzyme DAta
Sasaki, D.; Watanabe, S.; Kanai, T.; Atomi, H.; Imanaka, T.; Miki, K.
Characterization and in vitro interaction study of a [NiFe] hydrogenase large subunit from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1
Biochem. Biophys. Res. Commun.
417
192-196
2012
archaeon, insertion sequences, Thermococcus kodakarensis, Thermococcus kodakarensis KOD1, Thermococcus kodakarensis (Q8NKS2)
Automatic Mining of ENzyme DAta
Quintas, P.O.; Oliveira, M.S.; Catarino, T.; Turner, D.L.
Electron transfer between multihaem cytochromes c3 from Desulfovibrio africanus
Biochim. Biophys. Acta
1827
502-506
2013
Desulfocurvibacter africanus
Manually annotated by BRENDA team
Ciaccafava, A.; Alberola, M.; Hameury, S.; Infossi, P.; Giudici-Orticoni, M.; Lojou, E.
Hydrogen bioelectrooxidation in ionic liquids: From cytochrome c 3 redox behavior to hydrogenase activity
Electrochim. Acta
56
3359-3368
2011
Desulfovibrio vulgaris, Desulfovibrio vulgaris Hildenborough
-
Manually annotated by BRENDA team
Mills, D.; Vitt, S.; Strauss, M.; Shima, S.; Vonck, J.
De novo modeling of the F420-reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron microscopy
eLife
2013
e00218
2013
Archaea
Automatic Mining of ENzyme DAta
Fritsch, J.; Scheerer, P.; Frielingsdorf, S.; Kroschinsky, S.; Friedrich, B.; Lenz, O.; Spahn, C.
The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre
Nature
479
249-253
2011
Cupriavidus necator H16
Automatic Mining of ENzyme DAta
Rippers, Y.; Utesch, T.; Hildebrandt, P.; Zebger, I.; Mroginski, M.A.
Insights into the structure of the active site of the O2-tolerant membrane bound [NiFe] hydrogenase of R. eutropha H16 by molecular modelling
Phys. Chem. Chem. Phys.
13
16146-16149
2011
Eutropha, Cupriavidus necator H16
Automatic Mining of ENzyme DAta
Lauterbach, L.; Idris, Z.; Vincent, K.; Lenz, O.
Catalytic properties of the isolated diaphorase fragment of the NAD +-reducing [NiFe]-hydrogenase from Ralstonia eutropha
PLoS ONE
6
e25939
2011
Cupriavidus necator, Cupriavidus necator (P22317), Cupriavidus necator (P22318)
Automatic Mining of ENzyme DAta
Schiffels, J.; Pinkenburg, O.; Schelden, M.; Aboulnaga, e.l.-.H.A.; Baumann, M.E.; Selmer, T.
An innovative cloning platform enables large-scale production and maturation of an oxygen-tolerant [NiFe]-hydrogenase from Cupriavidus necator in Escherichia coli
PLoS ONE
8
e68812
2013
Cupriavidus necator, Escherichia coli
Automatic Mining of ENzyme DAta
Topin, J.; Rousset, M.; Antonczak, S.; Golebiowski, J.
Kinetics and thermodynamics of gas diffusion in a NiFe hydrogenase
Proteins
80
677-682
2012
Solidesulfovibrio fructosivorans (P18187)
Manually annotated by BRENDA team
Sugimoto, Y.; Kitazumi, Y.; Shirai, O.; Nishikawa, K.; Higuchi, Y.; Yamamoto, M.; Kano, K.
Electrostatic roles in electron transfer from [NiFe] hydrogenase to cytochrome c3 from Desulfovibrio vulgaris Miyazaki F
Biochim. Biophys. Acta
1865
481-487
2017
BRENDA: Desulfovibrio vulgaris, Desulfovibrio vulgaris Miyazaki F
Textmining: Desulfovibrio vulgaris str. 'Miyazaki F', Electron
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Rumpel, S.; Siebel, J.F.; Diallo, M.; Fares, C.; Reijerse, E.J.; Lubitz, W.
Structural insight into the complex of ferredoxin and [FeFe] Hydrogenase from Chlamydomonas reinhardtii
ChemBioChem
16
1663-1669
2015
Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Yagi, T.; Ogo, S.; Higuchi, Y.
Catalytic cycle of cytochrome-c3 hydrogenase, a [NiFe]-enzyme, deduced from the structures of the enzyme and the enzyme mimic
Int. J. Hydrogen Energy
39
18543-18550
2014
Desulfovibrio vulgaris (P21853), Desulfovibrio vulgaris Miyazaki F (P21853)
-
Manually annotated by BRENDA team
Pinske, C.; Jaroschinsky, M.; Linek, S.; Kelly, C.L.; Sargent, F.; Sawers, R.G.
Physiology and bioenergetics of [NiFe]-hydrogenase 2-catalyzed H2-consuming and H2-producing reactions in Escherichia coli
J. Bacteriol.
197
296-306
2015
Escherichia coli
Automatic Mining of ENzyme DAta
Vitt, S.; Ma, K.; Warkentin, E.; Moll, J.; Pierik, A.J.; Shima, S.; Ermler, U.
The F420-reducing [NiFe]-hydrogenase complex from Methanothermobacter marburgensis, the first X-ray structure of a group 3 family member
J. Mol. Biol.
426
2813-2826
2014
Methanothermobacter marburgensis
Automatic Mining of ENzyme DAta
De Rosa, E.; Checchetto, V.; Franchin, C.; Bergantino, E.; Berto, P.; Szabo, I.; Giacometti, G.M.; Arrigoni, G.; Costantini, P.
[NiFe]-hydrogenase is essential for cyanobacterium Synechocystis sp. PCC 6803 aerobic growth in the dark
Sci. Rep.
5
12424
2015
Synechocystis sp.
Automatic Mining of ENzyme DAta
Stojanowic, A.; Mander, G.; Duin, E.; Hedderich, R.
Physiological role of the F420-non-reducing hydrogenase (MvH) from Methanothermobacter marburgensis
Arch. Microbiol.
180
194-203
2003
Methanothermobacter marburgensis
Automatic Mining of ENzyme DAta
Fischer, F.; Robbe-Saule, M.; Turlin, E.; Mancuso, F.; Michel, V.; Richaud, P.; Veyrier, F.; De Reuse, H.; Vinella, D.
Characterization in Helicobacter pylori of a nickel transporter essential for colonization that was acquired during evolution by gastric Helicobacter species
PLoS Pathog.
12
e1006018
2016
Helicobacter pylori, Homo sapiens
Automatic Mining of ENzyme DAta
Pinske, C.
The ferredoxin-like proteins HydN and YsaA enhance redox dye-linked activity of the formate dehydrogenase H component of the formate hydrogenlyase complex
Front. Microbiol.
9
1238
2018
Enterobacteriaceae
Automatic Mining of ENzyme DAta
Qian, H.; Liao, R.
QM/MM study of tungsten-dependent benzoyl-coenzyme A reductase rationalization of regioselectivity and predication of W vs Mo selectivity
Inorg. Chem.
57
10667-10678
2018
Electron
Automatic Mining of ENzyme DAta
Song, Y.; Liu, M.; Xie, L.; You, C.; Sun, J.; Zhang, Y.P.J.
A recombinant 12-His tagged Pyrococcus furiosus soluble [NiFe]-hydrogenase I overexpressed in Thermococcus kodakarensis KOD1 facilitates hydrogen-powered in vitro NADH regeneration
Biotechnol. J.
14
e1800301
2019
Pyrococcus furiosus, archaeon
Automatic Mining of ENzyme DAta
Zhang, L.; Morello, G.; Carr, S.B.; Armstrong, F.A.
Aerobic photocatalytic H2 production by a [NiFe] hydrogenase engineered to place a silver nanocluster in the electron relay
J. Am. Chem. Soc.
142
12699-12707
2020
Electron
Automatic Mining of ENzyme DAta
Wu, C.H.; Ponir, C.A.; Haja, D.K.; Adams, M.W.W.
Improved production of the NiFe-hydrogenase from Pyrococcus furiosus by increased expression of maturation genes
Protein Eng. Des. Sel.
31
337-344
2018
Pyrococcus furiosus (E7FHU4 AND E7FI44), Pyrococcus furiosus
Automatic Mining of ENzyme DAta
Kwon, S; Nishitani, Y; Watanabe, S; Hirao, Y; Imanaka, T; Kanai, T; Atomi, H; Miki, K
Crystal structure of a [NiFe] hydrogenase maturation protease HybD from Thermococcus kodakarensis KOD1.
Proteins
84
1321-7
2016
Thermococcus kodakarensis KOD1
Automatic Mining of ENzyme DAta
Sydor, AM; Liu, J; Zamble, DB
Effects of metal on the biochemical properties of Helicobacter pylori HypB, a maturation factor of [NiFe]-hydrogenase and urease.
J Bacteriol
193
1359-68
2011
Helicobacter pylori
Automatic Mining of ENzyme DAta
Sydor, AM; Lebrette, H; Ariyakumaran, R; Cavazza, C; Zamble, DB
Relationship between Ni(II) and Zn(II) coordination and nucleotide binding by the Helicobacter pylori [NiFe]-hydrogenase and urease maturation factor HypB.
J Biol Chem
289
3828-41
2014
Helicobacter pylori, Homo sapiens
Automatic Mining of ENzyme DAta
Haveman, SA; Brunelle, V; Voordouw, JK; Voordouw, G; Heidelberg, JF; Rabus, R
Gene expression analysis of energy metabolism mutants of Desulfovibrio vulgaris Hildenborough indicates an important role for alcohol dehydrogenase.
J Bacteriol
185
4345-53
2003
Desulfovibrio vulgaris str. Hildenborough
Automatic Mining of ENzyme DAta
Baltes, N; Kyaw, S; Hennig-Pauka, I; Gerlach, GF
Lack of influence of the anaerobic [NiFe] hydrogenase and L-1,2 propanediol oxidoreductase on the outcome of Actinobacillus pleuropneumoniae serotype 7 infection.
Vet Microbiol
102
67-72
2004
Actinobacillus pleuropneumoniae serovar 7, Actinobacillus
Automatic Mining of ENzyme DAta
Schauer, K; Muller, C; Carrière, M; Labigne, A; Cavazza, C; De Reuse, H
The Helicobacter pylori GroES cochaperonin HspA functions as a specialized nickel chaperone and sequestration protein through its unique C-terminal extension.
J Bacteriol
192
1231-7
2010
Helicobacter pylori, Homo sapiens
Automatic Mining of ENzyme DAta
Albracht, SP; van der Linden, E; Faber, BW
Quantitative amino acid analysis of bovine NADH:ubiquinone oxidoreductase (Complex I) and related enzymes. Consequences for the number of prosthetic groups.
Biochim Biophys Acta
1557
41-9
2003
Cupriavidus necator
Automatic Mining of ENzyme DAta
Arp, DJ; Burris, RH
Purification and properties of the particulate hydrogenase from the bacteroids of soybean root nodules.
Biochim Biophys Acta
570
221-30
1979
Glycine max, Bradyrhizobium japonicum, Electron
Automatic Mining of ENzyme DAta
van den Berg, WA; van Dongen, WM; Veeger, C
Reduction of the amount of periplasmic hydrogenase in Desulfovibrio vulgaris (Hildenborough) with antisense RNA: direct evidence for an important role of this hydrogenase in lactate metabolism.
J Bacteriol
173
3688-94
1991
Desulfovibrio vulgaris
Automatic Mining of ENzyme DAta
Patil, DS; Moura, JJ; He, SH; Teixeira, M; Prickril, BC; DerVartanian, DV; Peck, HD; LeGall, J; Huynh, BH
EPR-detectable redox centers of the periplasmic hydrogenase from Desulfovibrio vulgaris.
J Biol Chem
263
18732-8
1988
Desulfovibrio vulgaris
Automatic Mining of ENzyme DAta
Yagi, T; Kimura, K; Inokuchi, H
Analysis of the active center of hydrogenase from Desulfovibrio vulgaris Miyazaki by magnetic measurements.
J Biochem (Tokyo)
97
181-7
1985
Desulfovibrio vulgaris str. 'Miyazaki F', Desulfovibrio vulgaris Miyazaki, Electron
Automatic Mining of ENzyme DAta
Teixeira, M; Moura, I; Xavier, AV; Huynh, BH; DerVartanian, DV; Peck, HD; LeGall, J; Moura, JJ
Electron paramagnetic resonance studies on the mechanism of activation and the catalytic cycle of the nickel-containing hydrogenase from Desulfovibrio gigas.
J Biol Chem
260
8942-50
1985
Desulfovibrio gigas, Electron
Automatic Mining of ENzyme DAta
Kimura, K; Inokuchi, H; Nanami, H; Yagi, T
Magnetic susceptibility of hydrogenase from Desulfovibrio vulgaris.
J Biochem (Tokyo)
97
1831-3
1985
Chromatium, Desulfovibrio, Desulfovibrio vulgaris, Desulfovibrio vulgaris str. 'Miyazaki F', Electron
Automatic Mining of ENzyme DAta
Aketagawa, J; Kobayashi, K; Ishimoto, M
Characterization of periplasmic hydrogenase from Desulfovibrio vulgaris Miyazaki K.
J Biochem (Tokyo)
93
755-62
1983
Desulfovibrio vulgaris Miyazaki, Desulfovibrio, Desulfovibrio desulfuricans, Desulfovibrio vulgaris, Desulfovibrio vulgaris str. Hildenborough, Oryctolagus cuniculus
Automatic Mining of ENzyme DAta
Rey, L; Imperial, J; Palacios, JM; Ruiz-Argüeso, T
Purification of Rhizobium leguminosarum HypB, a nickel-binding protein required for hydrogenase synthesis.
J Bacteriol
176
6066-73
1994
Rhizobium leguminosarum, Pisum sativum
Automatic Mining of ENzyme DAta
Du, L; Tibelius, KH; Souza, EM; Garg, RP; Yates, MG
Sequences, organization and analysis of the hupZMNOQRTV genes from the Azotobacter chroococcum hydrogenase gene cluster.
J Mol Biol
243
549-57
1994
Azotobacter chroococcum, Bacteria, Cupriavidus necator, Escherichia coli, Rhizobium leguminosarum, Rhodobacter capsulatus
Automatic Mining of ENzyme DAta
Brito, B; Palacios, JM; Hidalgo, E; Imperial, J; Ruiz-Argüeso, T
Nickel availability to pea (Pisum sativum L.) plants limits hydrogenase activity of Rhizobium leguminosarum bv. viciae bacteroids by affecting the processing of the hydrogenase structural subunits.
J Bacteriol
176
5297-303
1994
Pisum sativum, Rhizobium leguminosarum bv. viciae UPM791
Automatic Mining of ENzyme DAta
Gorwa, MF; Croux, C; Soucaille, P
Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824.
J Bacteriol
178
2668-75
1996
Desulfovibrio, Clostridium
Automatic Mining of ENzyme DAta
Olson, JW; Maier, RJ
The sequences of hypF, hypC and hypD complete the hyp gene cluster required for hydrogenase activity in Bradyrhizobium japonicum.
Gene
199
93-9
1997
Bradyrhizobium japonicum
Automatic Mining of ENzyme DAta
Lemon, BJ; Peters, JW
Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum.
Biochemistry
38
12969-73
1999
Clostridium pasteurianum
Automatic Mining of ENzyme DAta
Magnani, P; Doussiere, J; Lissolo, T
Diphenylene iodonium as an inhibitor for the hydrogenase complex of Rhodobacter capsulatus. Evidence for two distinct electron donor sites.
Biochim Biophys Acta
1459
169-78
2000
Rhodobacter capsulatus, Electron, bacterium
Automatic Mining of ENzyme DAta
Vignais, PM; Dimon, B; Zorin, NA; Tomiyama, M; Colbeau, A
Characterization of the hydrogen-deuterium exchange activities of the energy-transducing HupSL hydrogenase and H(2)-signaling HupUV hydrogenase in Rhodobacter capsulatus.
J Bacteriol
182
5997-6004
2000
Rhodobacter capsulatus
Automatic Mining of ENzyme DAta
Li, S; Hall, MB
Modeling the active sites of metalloenzymes. 4. Predictions of the unready states of [NiFe] Desulfovibrio gigas hydrogenase from density functional theory.
Inorg Chem
40
18-24
2001
Desulfovibrio gigas
Automatic Mining of ENzyme DAta
Niu, S; Hall, MB
Modeling the active sites in metalloenzymes 5. The heterolytic bond cleavage of H(2) in the [NiFe] hydrogenase of desulfovibrio gigas by a nucleophilic addition mechanism.
Inorg Chem
40
6201-3
2001
Desulfovibrio, Desulfovibrio gigas, Dosidicus gigas
Automatic Mining of ENzyme DAta
Csáki, R; Hanczár, T; Bodrossy, L; Murrell, JC; Kovács, KL
Molecular characterization of structural genes coding for a membrane bound hydrogenase in Methylococcus capsulatus (Bath).
FEMS Microbiol Lett
205
203-7
2001
Methylococcus capsulatus
Automatic Mining of ENzyme DAta
Brecht, M; van Gastel, M; Buhrke, T; Friedrich, B; Lubitz, W
Direct detection of a hydrogen ligand in the [NiFe] center of the regulatory H2-sensing hydrogenase from Ralstonia eutropha in its reduced state by HYSCORE and ENDOR spectroscopy.
J Am Chem Soc
125
13075-83
2003
Desulfovibrio vulgaris str. 'Miyazaki F'
Automatic Mining of ENzyme DAta
Martínez, M; Brito, B; Imperial, J; Ruiz-Argüeso, T
Characterization of a new internal promoter (P3) for Rhizobium leguminosarum hydrogenase accessory genes hupGHIJ.
Microbiology
150
665-75
2004
Rhizobium leguminosarum
Automatic Mining of ENzyme DAta
Foerster, S; van Gastel, M; Brecht, M; Lubitz, W
An orientation-selected ENDOR and HYSCORE study of the Ni-C active state of Desulfovibrio vulgaris Miyazaki F hydrogenase.
J Biol Inorg Chem
10
51-62
2005
Desulfovibrio vulgaris str. 'Miyazaki F', Electron
Automatic Mining of ENzyme DAta
Morimoto, K; Kimura, T; Sakka, K; Ohmiya, K
Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production.
FEMS Microbiol Lett
246
229-34
2005
Clostridium paraputrificum M-21, Escherichia coli
Automatic Mining of ENzyme DAta
Voordouw, G; Niviere, V; Ferris, FG; Fedorak, PM; Westlake, DW
Distribution of Hydrogenase Genes in Desulfovibrio spp. and Their Use in Identification of Species from the Oil Field Environment.
Appl Environ Microbiol
56
3748-3754
1990
Desulfovibrio
Automatic Mining of ENzyme DAta
Leach, MR; Zhang, JW; Zamble, DB
The role of complex formation between the Escherichia coli hydrogenase accessory factors HypB and SlyD.
J Biol Chem
282
16177-86
2007
insertion sequences
Automatic Mining of ENzyme DAta
Dubini, A; Mus, F; Seibert, M; Grossman, AR; Posewitz, MC
Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity.
J Biol Chem
284
7201-13
2009
Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Luo, X; Brugna, M; Tron-Infossi, P; Giudici-Orticoni, MT; Lojou, E
Immobilization of the hyperthermophilic hydrogenase from Aquifex aeolicus bacterium onto gold and carbon nanotube electrodes for efficient H(2) oxidation.
J Biol Inorg Chem
2009
Aquifex aeolicus, bacterium, Desulfovibrio fructosivorans
Automatic Mining of ENzyme DAta
Marques, MC; Coelho, R; De Lacey, AL; Pereira, IA; Matias, PM
The three-dimensional structure of [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough: a hydrogenase without a bridging ligand in the active site in its oxidised, "as-isolated" state.
J Mol Biol
396
893-907
2010
Desulfovibrio vulgaris str. Hildenborough
Automatic Mining of ENzyme DAta
Venceslau, SS; Matos, D; Pereira, IA
EPR characterization of the new Qrc complex from sulfate reducing bacteria and its ability to form a supercomplex with hydrogenase and TpIc(3).
FEBS Lett
585
2177-81
2011
Electron
Automatic Mining of ENzyme DAta
Kim, JY; Jo, BH; Jo, Y; Cha, HJ
Improved production of biohydrogen in light-powered Escherichia coli by co-expression of proteorhodopsin and heterologous hydrogenase.
Microb Cell Fact
11
2
2012
Escherichia coli, Hydrogenovibrio marinus
Automatic Mining of ENzyme DAta
Douglas, CD; Ngu, TT; Kaluarachchi, H; Zamble, DB
Metal Transfer within the Escherichia coli HypB-HypA Complex of Hydrogenase Accessory Proteins.
Biochemistry
2013
Escherichia coli
Automatic Mining of ENzyme DAta
Monsalve, K; Roger, M; Gutierrez-Sanchez, C; Ilbert, M; Nitsche, S; Byrne-Kodjabachian, D; Marchi, V; Lojou, E
Hydrogen bioelectrooxidation on gold nanoparticle-based electrodes modified by Aquifex aeolicus hydrogenase: Application to hydrogen/oxygen enzymatic biofuel cells.
Bioelectrochemistry
106
47-55
2015
Aquifex aeolicus, bacterium
Automatic Mining of ENzyme DAta
Becker, R; Amirjalayer, S; Li, P; Woutersen, S; Reek, JN
An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media.
Sci Adv
2
e1501014
2016
Electron
Automatic Mining of ENzyme DAta
Hansen, M; Perner, M
Hydrogenase Gene Distribution and H2 Consumption Ability within the Thiomicrospira Lineage.
Front Microbiol
7
99
2016
Thiomicrospira, gammaproteobacteria, Hydrogenovibrio
Automatic Mining of ENzyme DAta
Wang, CP; Franco, R; Moura, JJ; Moura, I; Day, EP
The nickel site in active Desulfovibrio baculatus [NiFeSe] hydrogenase is diamagnetic. Multifield saturation magnetization measurement of the spin state of Ni(II).
J Biol Chem
267
7378-80
1992
Desulfomicrobium baculatum, Bacteria
Automatic Mining of ENzyme DAta
Menon, NK; Robbins, J; Wendt, JC; Shanmugam, KT; Przybyla, AE
Mutational analysis and characterization of the Escherichia coli hya operon, which encodes [NiFe] hydrogenase 1.
J Bacteriol
173
4851-61
1991
Escherichia coli
Automatic Mining of ENzyme DAta
Teixeira, M; Moura, I; Fauque, G; Dervartanian, DV; Legall, J; Peck, HD; Moura, JJ; Huynh, BH
The iron-sulfur centers of the soluble [NiFeSe] hydrogenase, from Desulfovibrio baculatus (DSM 1743). EPR and Mössbauer characterization.
Eur J Biochem
189
381-6
1990
Desulfomicrobium baculatum
Automatic Mining of ENzyme DAta
Deckers, HM; Wilson, FR; Voordouw, G
Cloning and sequencing of a [NiFe] hydrogenase operon from Desulfovibrio vulgaris Miyazaki F.
J Gen Microbiol
136
2021-8
1990
Desulfovibrio vulgaris str. 'Miyazaki F', Desulfovibrio gigas, Desulfovibrio vulgaris str. Hildenborough
Automatic Mining of ENzyme DAta
Teixeira, M; Moura, I; Xavier, AV; Moura, JJ; LeGall, J; DerVartanian, DV; Peck, HD; Huynh, BH
Redox intermediates of Desulfovibrio gigas [NiFe] hydrogenase generated under hydrogen. Mössbauer and EPR characterization of the metal centers.
J Biol Chem
264
16435-50
1989
Desulfovibrio gigas
Automatic Mining of ENzyme DAta
Voordouw, G; Strang, JD; Wilson, FR
Organization of the genes encoding [Fe] hydrogenase in Desulfovibrio vulgaris subsp. oxamicus Monticello.
J Bacteriol
171
3881-9
1989
Desulfovibrio vulgaris, Cupidesulfovibrio oxamicus
Automatic Mining of ENzyme DAta
Huynh, BH; Patil, DS; Moura, I; Teixeira, M; Moura, JJ; DerVartanian, DV; Czechowski, MH; Prickril, BC; Peck, HD; LeGall, J
On the active sites of the [NiFe] hydrogenase from Desulfovibrio gigas. Mössbauer and redox-titration studies.
J Biol Chem
262
795-800
1987
Desulfovibrio gigas
Automatic Mining of ENzyme DAta
Wawer, C; Muyzer, G
Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments.
Appl Environ Microbiol
61
2203-10
1995
Desulfovibrio
Automatic Mining of ENzyme DAta
Menon, AL; Robson, RL
In vivo and in vitro nickel-dependent processing of the [NiFe] hydrogenase in Azotobacter vinelandii.
J Bacteriol
176
291-5
1994
Azotobacter vinelandii
Automatic Mining of ENzyme DAta
Franco, R; Moura, I; LeGall, J; Peck, HD; Huynh, BH; Moura, JJ
Characterization of D. desulfuricans (ATCC 27774) [NiFe] hydrogenase EPR and redox properties of the native and the dihydrogen reacted states.
Biochim Biophys Acta
1144
302-8
1993
Desulfovibrio desulfuricans
Automatic Mining of ENzyme DAta
Rousset, M; Dermoun, Z; Wall, JD; Belaich, JP
Analysis of the periplasmic [NiFe] hydrogenase transcription unit from Desulfovibrio fructosovorans.
J Bacteriol
175
3388-93
1993
Desulfovibrio fructosivorans
Automatic Mining of ENzyme DAta
Sorgenfrei, O; Linder, D; Karas, M; Klein, A
A novel very small subunit of a selenium containing [NiFe] hydrogenase of Methanococcus voltae is postranslationally processed by cleavage at a defined position.
Eur J Biochem
213
1355-8
1993
Methanococcus voltae
Automatic Mining of ENzyme DAta
Wawer, C; Jetten, MS; Muyzer, G
Genetic diversity and expression of the [NiFe] hydrogenase large-subunit gene of Desulfovibrio spp. in environmental samples.
Appl Environ Microbiol
63
4360-9
1997
Desulfovibrio
Automatic Mining of ENzyme DAta
Rousset, M; Magro, V; Forget, N; Guigliarelli, B; Belaich, JP; Hatchikian, EC
Heterologous expression of the Desulfovibrio gigas [NiFe] hydrogenase in Desulfovibrio fructosovorans MR400.
J Bacteriol
180
4982-6
1998
Desulfovibrio fructosivorans, Desulfovibrio gigas, Dosidicus gigas
Automatic Mining of ENzyme DAta
Rousset, M; Montet, Y; Guigliarelli, B; Forget, N; Asso, M; Bertrand, P; Fontecilla-Camps, JC; Hatchikian, EC
[3Fe-4S] to [4Fe-4S] cluster conversion in Desulfovibrio fructosovorans [NiFe] hydrogenase by site-directed mutagenesis.
Proc Natl Acad Sci U S A
95
11625-30
1998
Desulfovibrio fructosivorans, Desulfovibrio
Automatic Mining of ENzyme DAta
Pfeiffer, M; Bestgen, H; Bürger, A; Klein, A
The vhuU gene encoding a small subunit of a selenium-containing [NiFe]-hydrogenase in Methanococcus voltae appears to be essential for the cell.
Arch Microbiol
170
418-26
1998
Methanococcus voltae, Escherichia coli
Automatic Mining of ENzyme DAta
Peters, JW; Lanzilotta, WN; Lemon, BJ; Seefeldt, LC
X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution.
Science
282
1853-8
1998
Clostridium pasteurianum
Automatic Mining of ENzyme DAta
Brugna, M; Giudici-Orticoni, MT; Spinelli, S; Brown, K; Tegoni, M; Bruschi, M
Kinetics and interaction studies between cytochrome c3 and Fe-only hydrogenase from Desulfovibrio vulgaris Hildenborough.
Proteins
33
590-600
1998
Bacteria, Desulfovibrio vulgaris str. Hildenborough, Electron
Automatic Mining of ENzyme DAta
Happe, RP; Roseboom, W; Albracht, SP
Pre-steady-state kinetics of the reactions of [NiFe]-hydrogenase from Chromatium vinosum with H2 and CO.
Eur J Biochem
259
602-8
1999
Allochromatium vinosum
Automatic Mining of ENzyme DAta
Hatchikian, EC; Magro, V; Forget, N; Nicolet, Y; Fontecilla-Camps, JC
Carboxy-terminal processing of the large subunit of [Fe] hydrogenase from Desulfovibrio desulfuricans ATCC 7757.
J Bacteriol
181
2947-52
1999
Desulfovibrio desulfuricans, Desulfovibrio vulgaris str. Hildenborough
Automatic Mining of ENzyme DAta
Pershad, HR; Duff, JL; Heering, HA; Duin, EC; Albracht, SP; Armstrong, FA
Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value.
Biochemistry
38
8992-9
1999
Allochromatium vinosum, Electron
Automatic Mining of ENzyme DAta
Gessner, C; Stein, M; Albracht, SP; Lubitz, W
Orientation-selected ENDOR of the active center in Chromatium vinosum [NiFe] hydrogenase in the oxidized "ready" state.
J Biol Inorg Chem
4
379-89
1999
Allochromatium vinosum, Electron
Automatic Mining of ENzyme DAta
Rákhely, G; Zhou, ZH; Adams, MW; Kovács, KL
Biochemical and molecular characterization of the [NiFe] hydrogenase from the hyperthermophilic archaeon, Thermococcus litoralis.
Eur J Biochem
266
1158-65
1999
Thermococcus litoralis, archaeon
Automatic Mining of ENzyme DAta
Atta, M; Meyer, J
Characterization of the gene encoding the [Fe]-hydrogenase from Megasphaera elsdenii.
Biochim Biophys Acta
1476
368-71
2000
Megasphaera elsdenii, Thermotoga maritima, bacterium
Automatic Mining of ENzyme DAta
Trofanchuk, O; Stein, M; Gessner, C; Lendzian, F; Higuchi, Y; Lubitz, W
Single crystal EPR studies of the oxidized active site of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F.
J Biol Inorg Chem
5
36-44
2000
Desulfovibrio vulgaris str. 'Miyazaki F'
Automatic Mining of ENzyme DAta
Magalon, A; Böck, A
Dissection of the maturation reactions of the [NiFe] hydrogenase 3 from Escherichia coli taking place after nickel incorporation.
FEBS Lett
473
254-8
2000
Escherichia coli
Automatic Mining of ENzyme DAta
Higuchi, Y; Toujou, F; Tsukamoto, K; Yagi, T
The presence of a SO molecule in [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki as detected by mass spectrometry.
J Inorg Biochem
80
205-11
2000
Desulfovibrio vulgaris Miyazaki, Desulfovibrio vulgaris str. 'Miyazaki F', Clostridium pasteurianum, Sus scrofa
Automatic Mining of ENzyme DAta
Matias, PM; Soares, CM; Saraiva, LM; Coelho, R; Morais, J; Le Gall, J; Carrondo, MA
[NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 A and modelling studies of its interaction with the tetrahaem cytochrome c3.
J Biol Inorg Chem
6
63-81
2001
Desulfovibrio desulfuricans ATCC 27774
Automatic Mining of ENzyme DAta
Verhagen, MF; O'Rourke, TW; Menon, AL; Adams, MW
Heterologous expression and properties of the gamma-subunit of the Fe-only hydrogenase from Thermotoga maritima.
Biochim Biophys Acta
1505
209-19
2001
bacterium, Thermotoga maritima
Automatic Mining of ENzyme DAta
Nicolet, Y; de Lacey, AL; Vernède, X; Fernandez, VM; Hatchikian, EC; Fontecilla-Camps, JC
Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans.
J Am Chem Soc
123
1596-601
2001
Desulfovibrio desulfuricans
Automatic Mining of ENzyme DAta
Takács, M; Rákhely, G; Kovács, KL
Molecular characterization and heterologous expression of hypCD, the first two [NiFe] hydrogenase accessory genes of Thermococcus litoralis.
Arch Microbiol
176
231-5
2001
Thermococcus litoralis
Automatic Mining of ENzyme DAta
Bleijlevens, B; Faber, BW; Albracht, SP
The [NiFe] hydrogenase from Allochromatium vinosum studied in EPR-detectable states: H/D exchange experiments that yield new information about the structure of the active site.
J Biol Inorg Chem
6
763-9
2001
Allochromatium vinosum
Automatic Mining of ENzyme DAta
Buhrke, T; Bleijlevens, B; Albracht, SP; Friedrich, B
Involvement of hyp gene products in maturation of the H(2)-sensing [NiFe] hydrogenase of Ralstonia eutropha.
J Bacteriol
183
7087-93
2001
Cupriavidus necator
Automatic Mining of ENzyme DAta
Pohorelic, BK; Voordouw, JK; Lojou, E; Dolla, A; Harder, J; Voordouw, G
Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism.
J Bacteriol
184
679-86
2002
Desulfovibrio vulgaris str. Hildenborough, Electron
Automatic Mining of ENzyme DAta
Chen, Z; Lemon, BJ; Huang, S; Swartz, DJ; Peters, JW; Bagley, KA
Infrared studies of the CO-inhibited form of the Fe-only hydrogenase from Clostridium pasteurianum I: examination of its light sensitivity at cryogenic temperatures.
Biochemistry
41
2036-43
2002
Clostridium pasteurianum
Automatic Mining of ENzyme DAta
Voncken, FG; Boxma, B; van Hoek, AH; Akhmanova, AS; Vogels, GD; Huynen, M; Veenhuis, M; Hackstein, JH
A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp. L2.
Gene
284
103-12
2002
Neocallimastix
Automatic Mining of ENzyme DAta
Winkler, M; Heil, B; Heil, B; Happe, T
Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca.
Biochim Biophys Acta
1576
330-4
2002
[Chlorella] fusca
Automatic Mining of ENzyme DAta
Davidson, EA; van der Giezen, M; Horner, DS; Embley, TM; Howe, CJ
An [Fe] hydrogenase from the anaerobic hydrogenosome-containing fungus Neocallimastix frontalis L2.
Gene
296
45-52
2002
Neocallimastix frontalis L2, Neocallimastix, Neocallimastix frontalis, Stenotrophomonas nitritireducens
Automatic Mining of ENzyme DAta
Léger, C; Jones, AK; Roseboom, W; Albracht, SP; Armstrong, FA
Enzyme electrokinetics: hydrogen evolution and oxidation by Allochromatium vinosum [NiFe]-hydrogenase.
Biochemistry
41
15736-46
2002
Allochromatium vinosum
Automatic Mining of ENzyme DAta
Watrous, MM; Clark, S; Kutty, R; Huang, S; Rudolph, FB; Hughes, JB; Bennett, GN
2,4,6-trinitrotoluene reduction by an Fe-only hydrogenase in Clostridium acetobutylicum.
Appl Environ Microbiol
69
1542-7
2003
Clostridium acetobutylicum
Automatic Mining of ENzyme DAta
Haumann, M; Porthun, A; Buhrke, T; Liebisch, P; Meyer-Klaucke, W; Friedrich, B; Dau, H
Hydrogen-induced structural changes at the nickel site of the regulatory [NiFe] hydrogenase from Ralstonia eutropha detected by X-ray absorption spectroscopy.
Biochemistry
42
11004-15
2003
Cupriavidus necator
Automatic Mining of ENzyme DAta
Fournier, M; Dermoun, Z; Durand, MC; Dolla, A
A new function of the Desulfovibrio vulgaris Hildenborough [Fe] hydrogenase in the protection against oxidative stress.
J Biol Chem
279
1787-93
2004
Desulfovibrio vulgaris str. Hildenborough
Automatic Mining of ENzyme DAta
Zhou, T; Mo, Y; Liu, A; Zhou, Z; Tsai, KR
Enzymatic mechanism of Fe-only hydrogenase: density functional study on H-H making/breaking at the diiron cluster with concerted proton and electron transfers.
Inorg Chem
43
923-30
2004
Electron
Automatic Mining of ENzyme DAta
Buhrke, T; Lenz, O; Porthun, A; Friedrich, B
The H2-sensing complex of Ralstonia eutropha: interaction between a regulatory [NiFe] hydrogenase and a histidine protein kinase.
Mol Microbiol
51
1677-89
2004
Cupriavidus necator
Automatic Mining of ENzyme DAta
Kurkin, S; George, SJ; Thorneley, RN; Albracht, SP
Hydrogen-induced activation of the [NiFe]-hydrogenase from Allochromatium vinosum as studied by stopped-flow infrared spectroscopy.
Biochemistry
43
6820-31
2004
Allochromatium vinosum
Automatic Mining of ENzyme DAta
Bleijlevens, B; van Broekhuizen, FA; De Lacey, AL; Roseboom, W; Fernandez, VM; Albracht, SP
The activation of the [NiFe]-hydrogenase from Allochromatium vinosum. An infrared spectro-electrochemical study.
J Biol Inorg Chem
9
743-52
2004
Allochromatium vinosum
Automatic Mining of ENzyme DAta
Lamle, SE; Albracht, SP; Armstrong, FA
Electrochemical potential-step investigations of the aerobic interconversions of [NiFe]-hydrogenase from Allochromatium vinosum: insights into the puzzling difference between unready and ready oxidized inactive states.
J Am Chem Soc
126
14899-909
2004
Allochromatium vinosum
Automatic Mining of ENzyme DAta
van Gastel, M; Fichtner, C; Neese, F; Lubitz, W
EPR experiments to elucidate the structure of the ready and unready states of the [NiFe] hydrogenase of Desulfovibrio vulgaris Miyazaki F.
Biochem Soc Trans
33
7-11
2005
Desulfovibrio vulgaris str. 'Miyazaki F'
Automatic Mining of ENzyme DAta
Goenka, A; Voordouw, JK; Lubitz, W; Gärtner, W; Voordouw, G
Construction of a [NiFe]-hydrogenase deletion mutant of Desulfovibrio vulgaris Hildenborough.
Biochem Soc Trans
33
59-60
2005
Desulfovibrio vulgaris str. Hildenborough
Automatic Mining of ENzyme DAta
Palacios, JM; Manyani, H; Martínez, M; Ureta, AC; Brito, B; Báscones, E; Rey, L; Imperial, J; Ruiz-Argüeso, T
Genetics and biotechnology of the H(2)-uptake [NiFe] hydrogenase from Rhizobium leguminosarum bv. viciae, a legume endosymbiotic bacterium.
Biochem Soc Trans
33
94-6
2005
bacterium, Rhizobium leguminosarum bv. viciae
Automatic Mining of ENzyme DAta
Tye, JW; Lee, J; Wang, HW; Mejia-Rodriguez, R; Reibenspies, JH; Hall, MB; Darensbourg, MY
Dual electron uptake by simultaneous iron and ligand reduction in an N-heterocyclic carbene substituted [FeFe] hydrogenase model compound.
Inorg Chem
44
5550-2
2005
Electron
Automatic Mining of ENzyme DAta
Manyani, H; Rey, L; Palacios, JM; Imperial, J; Ruiz-Argüeso, T
Gene products of the hupGHIJ operon are involved in maturation of the iron-sulfur subunit of the [NiFe] hydrogenase from Rhizobium leguminosarum bv. viciae.
J Bacteriol
187
7018-26
2005
Rhizobium leguminosarum
Automatic Mining of ENzyme DAta
van Gastel, M; Stein, M; Brecht, M; Schröder, O; Lendzian, F; Bittl, R; Ogata, H; Higuchi, Y; Lubitz, W
A single-crystal ENDOR and density functional theory study of the oxidized states of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F.
J Biol Inorg Chem
11
41-51
2006
Desulfovibrio vulgaris str. 'Miyazaki F', Electron
Automatic Mining of ENzyme DAta
Bryant, RD; Van Ommen Kloeke, F; Laishley, EJ
Regulation of the Periplasmic [Fe] Hydrogenase by Ferrous Iron in Desulfovibrio vulgaris (Hildenborough).
Appl Environ Microbiol
59
491-495
1993
Desulfovibrio vulgaris, bacterium
Automatic Mining of ENzyme DAta
Kutty, R; Bennett, GN
Studies on inhibition of transformation of 2,4,6-trinitrotoluene catalyzed by Fe-only hydrogenase from Clostridium acetobutylicum.
J Ind Microbiol Biotechnol
1-9
2006
Clostridium acetobutylicum, Transformation, Clostridium acetobutylicum ATCC 824
Automatic Mining of ENzyme DAta
King, PW; Posewitz, MC; Ghirardi, ML; Seibert, M
Functional Studies of [FeFe] Hydrogenase Maturation in an Escherichia coli Biosynthetic System.
J Bacteriol
188
2163-72
2006
Escherichia coli, Clostridium acetobutylicum, Chlamydomonas reinhardtii, bacterium
Automatic Mining of ENzyme DAta
Ihara, M; Nakamoto, H; Kamachi, T; Okura, I; Maeda, M
Photoinduced hydrogen production by direct electron transfer from photosystem I cross-linked with cytochrome c3 to [NiFe]-hydrogenase.
Photochem Photobiol
82
1677-85
0
Electron
Automatic Mining of ENzyme DAta
Fichtner, C; Laurich, C; Bothe, E; Lubitz, W
Spectroelectrochemical characterization of the [NiFe] hydrogenase of Desulfovibrio vulgaris Miyazaki F.
Biochemistry
45
9706-16
2006
Desulfovibrio vulgaris str. 'Miyazaki F'
Automatic Mining of ENzyme DAta
Boxma, B; Ricard, G; van Hoek, AH; Severing, E; Moon-van der Staay, SY; van der Staay, GW; van Alen, TA; de Graaf, RM; Cremers, G; Kwantes, M; McEwan, NR; Newbold, CJ; Jouany, JP; Michalowski, T; Pristas, P; Huynen, MA; Hackstein, JH
The [FeFe] hydrogenase of Nyctotherus ovalis has a chimeric origin.
BMC Evol Biol
7
230
2007
Nyctotherus ovalis
Automatic Mining of ENzyme DAta
Flores, M; Agrawal, AG; van Gastel, M; Gärtner, W; Lubitz, W
Electron-electron double resonance-detected NMR to measure metal hyperfine interactions: 61Ni in the Ni-B state of the [NiFe] hydrogenase of Desulfovibrio vulgaris Miyazaki F.
J Am Chem Soc
130
2402-3
2008
Desulfovibrio vulgaris str. 'Miyazaki F'
Automatic Mining of ENzyme DAta
Silakov, A; Wenk, B; Reijerse, E; Albracht, SP; Lubitz, W
Spin distribution of the H-cluster in the H(ox)-CO state of the [FeFe] hydrogenase from Desulfovibrio desulfuricans: HYSCORE and ENDOR study of (14)N and (13)C nuclear interactions.
J Biol Inorg Chem
14
301-13
2009
Desulfovibrio desulfuricans
Automatic Mining of ENzyme DAta
Maróti, G; Tong, Y; Yooseph, S; Baden-Tillson, H; Smith, HO; Kovács, KL; Frazier, M; Venter, JC; Xu, Q
Discovery of [NiFe] hydrogenase genes in metagenomic DNA: cloning and heterologous expression in Thiocapsa roseopersicina.
Appl Environ Microbiol
75
5821-30
2009
Thiocapsa roseopersicina
Automatic Mining of ENzyme DAta
Millo, D; Pandelia, ME; Utesch, T; Wisitruangsakul, N; Mroginski, MA; Lubitz, W; Hildebrandt, P; Zebger, I
Spectroelectrochemical Study of the [NiFe] Hydrogenase from Desulfovibrio vulgaris Miyazaki F in Solution and Immobilized on Biocompatible Gold Surfaces.
J Phys Chem B
2009
Desulfovibrio vulgaris str. 'Miyazaki F'
Automatic Mining of ENzyme DAta
Pandelia, ME; Ogata, H; Currell, LJ; Flores, M; Lubitz, W
Inhibition of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F by carbon monoxide: an FTIR and EPR spectroscopic study.
Biochim Biophys Acta
1797
304-13
2010
Desulfovibrio vulgaris str. 'Miyazaki F'
Automatic Mining of ENzyme DAta
Winter, G; Dökel, S; Jones, AK; Scheerer, P; Krauss, N; Höhne, W; Friedrich, B
Crystallization and preliminary X-ray crystallographic analysis of the [NiFe]-hydrogenase maturation factor HypF1 from Ralstonia eutropha H16.
Acta Crystallogr Sect F Struct Biol Cryst Commun
66
452-5
2010
Cupriavidus necator H16
Automatic Mining of ENzyme DAta
Kellers, P; Pandelia, ME; Currell, LJ; Görner, H; Lubitz, W
FTIR study on the light sensitivity of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F: Ni-C to Ni-L photoconversion, kinetics of proton rebinding and H/D isotope effect.
Phys Chem Chem Phys
11
8680-3
2009
Desulfovibrio vulgaris str. 'Miyazaki F'
Automatic Mining of ENzyme DAta
Liu, YC; Tu, LK; Yen, TH; Lee, GH; Yang, ST; Chiang, MH
Secondary coordination sphere interactions within the biomimetic iron azadithiolate complexes related to Fe-only hydrogenase: dynamic measure of electron density about the Fe sites.
Inorg Chem
49
6409-20
2010
Electron
Automatic Mining of ENzyme DAta
Kim, JY; Jo, BH; Cha, HJ
Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli.
Microb Cell Fact
9
54
2010
Escherichia coli
Automatic Mining of ENzyme DAta
Ogata, H; Kellers, P; Lubitz, W
The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: characterization of the oxidized enzyme (Ni-A state).
J Mol Biol
402
428-44
2010
Allochromatium vinosum, bacterium, Desulfovibrio
Automatic Mining of ENzyme DAta
Silakov, A; Shaw, JL; Reijerse, EJ; Lubitz, W
Advanced Electron Paramagnetic Resonance and Density Functional Theory Study of a {2Fe3S} Cluster Mimicking the Active Site of [FeFe] Hydrogenase.
J Am Chem Soc
2010
Electron
Automatic Mining of ENzyme DAta
Chung, KC; Zamble, DB
The Escherichia coli metal-binding chaperone SlyD interacts with the large subunit of [NiFe]-hydrogenase 3.
FEBS Lett
585
291-4
2011
Escherichia coli
Automatic Mining of ENzyme DAta
Wells, MA; Mercer, J; Mott, RA; Pereira-Medrano, AG; Burja, AM; Radianingtyas, H; Wright, PC
Engineering a non-native hydrogen production pathway into Escherichia coli via a cyanobacterial [NiFe] hydrogenase.
Metab Eng
2011
Escherichia coli
Automatic Mining of ENzyme DAta
Millo, D; Hildebrandt, P; Pandelia, ME; Lubitz, W; Zebger, I
SEIRA Spectroscopy of the Electrochemical Activation of an Immobilized [NiFe] Hydrogenase under Turnover and Non-Turnover Conditions.
Angew Chem Int Ed Engl
50
2632-4
2011
Seira
Automatic Mining of ENzyme DAta
Shima, S; Schick, M; Tamura, H
Preparation of [fe]-hydrogenase from methanogenic archaea.
Methods Enzymol
494
119-37
2011
Archaea, Methanothermobacter marburgensis
Automatic Mining of ENzyme DAta
Pandelia, ME; Nitschke, W; Infossi, P; Giudici-Orticoni, MT; Bill, E; Lubitz, W
Characterization of a unique [FeS] cluster in the electron transfer chain of the oxygen tolerant [NiFe] hydrogenase from Aquifex aeolicus.
Proc Natl Acad Sci U S A
2011
Aquifex aeolicus, Electron
Automatic Mining of ENzyme DAta
Kanai, T; Matsuoka, R; Beppu, H; Nakajima, A; Okada, Y; Atomi, H; Imanaka, T
Distinct physiological roles of the three [NiFe]-hydrogenase orthologs in the hyperthermophilic archaeon Thermococcus kodakarensis.
J Bacteriol
193
3109-16
2011
Thermococcus kodakarensis, archaeon, Thermococcus kodakarensis KOD1
Automatic Mining of ENzyme DAta
McIntosh, CL; Germer, F; Schulz, R; Appel, J; Jones, AK
The [NiFe]-Hydrogenase of the Cyanobacterium Synechocystis sp. PCC 6803 Works Bidirectionally with a Bias to H(2) Production.
J Am Chem Soc
133
11308-11319
2011
Synechocystis sp.
Automatic Mining of ENzyme DAta
Weyman, PD; Smith, HO; Xu, Q
Genetic analysis of the Alteromonas macleodii [NiFe]-hydrogenase.
FEMS Microbiol Lett
322
180-7
2011
Alteromonas macleodii
Automatic Mining of ENzyme DAta
Shi, L; Belchik, SM; Plymale, AE; Heald, S; Dohnalkova, AC; Sybirna, K; Bottin, H; Squier, TC; Zachara, JM; Fredrickson, JK
Purification and Characterization of the [NiFe]-Hydrogenase of Shewanella oneidensis MR-1.
Appl Environ Microbiol
77
5584-90
2011
Shewanella oneidensis MR-1
Automatic Mining of ENzyme DAta
Constant, P; Chowdhury, SP; Hesse, L; Pratscher, J; Conrad, R
Genome Data Mining and Soil Survey for the Novel Group 5 [NiFe]-Hydrogenase To Explore the Diversity and Ecological Importance of Presumptive High-Affinity H2-Oxidizing Bacteria.
Appl Environ Microbiol
77
6027-35
2011
Bacteria, Streptomyces
Automatic Mining of ENzyme DAta
Kim, JY; Jo, BH; Cha, HJ
Production of biohydrogen by heterologous expression of oxygen-tolerant Hydrogenovibrio marinus [NiFe]-hydrogenase in Escherichia coli.
J Biotechnol
155
312-9
2011
Escherichia coli, Hydrogenovibrio marinus, Escherichia coli BL21, bacterium
Automatic Mining of ENzyme DAta
Shomura, Y; Hagiya, K; Yoon, KS; Nishihara, H; Higuchi, Y
Crystallization and preliminary X-ray diffraction analysis of membrane-bound respiratory [NiFe] hydrogenase from Hydrogenovibrio marinus.
Acta Crystallogr Sect F Struct Biol Cryst Commun
67
827-9
2011
Hydrogenovibrio marinus, Bacteria
Automatic Mining of ENzyme DAta
Ballor, NR; Leadbetter, JR
Analysis of Extensive [FeFe] Hydrogenase Gene Diversity Within the Gut Microbiota of Insects Representing Five Families of Dictyoptera.
Microb Ecol
63
586-95
2012
Blattodea, Dictyoptera, Hexapoda, Microbiota, Termitoidae
Automatic Mining of ENzyme DAta
Chan Chung, KC; Zamble, DB
Protein interactions and localization of the Escherichia coli accessory protein HypA during nickel insertion to [NiFe] hydrogenase.
J Biol Chem
286
43081-90
2011
Escherichia coli, insertion sequences
Automatic Mining of ENzyme DAta
Cheng, T; Li, H; Xia, W; Sun, H
Multifaceted SlyD from Helicobacter pylori: implication in [NiFe] hydrogenase maturation.
J Biol Inorg Chem
17
331-43
2012
Helicobacter pylori
Automatic Mining of ENzyme DAta
Trchounian, K; Pinske, C; Sawers, RG; Trchounian, A
Characterization of Escherichia coli [NiFe]-Hydrogenase Distribution During Fermentative Growth at Different pHs.
Cell Biochem Biophys
2011
Escherichia coli
Automatic Mining of ENzyme DAta
Zadvornyy, OA; Lucon, JE; Gerlach, R; Zorin, NA; Douglas, T; Elgren, TE; Peters, JW
Photo-induced H2 production by [NiFe]-hydrogenase from T. roseopersicina covalently linked to a Ru(II) photosensitizer.
J Inorg Biochem
106
151-5
2012
Thiocapsa roseopersicina
Automatic Mining of ENzyme DAta
Pandelia, ME; Infossi, P; Stein, M; Giudici-Orticoni, MT; Lubitz, W
Spectroscopic characterization of the key catalytic intermediate Ni-C in the O2-tolerant [NiFe] hydrogenase I from Aquifex aeolicus: evidence of a weakly bound hydride.
Chem Commun (Camb)
48
823-5
2012
Aquifex aeolicus
Automatic Mining of ENzyme DAta
Wang, WG; Wang, F; Wang, HY; Tung, CH; Wu, LZ
Electron transfer and hydrogen generation from a molecular dyad: platinum(II) alkynyl complex anchored to [FeFe] hydrogenase subsite mimic.
Dalton Trans
41
2420-6
2012
Electron
Automatic Mining of ENzyme DAta
Schick, M; Xie, X; Ataka, K; Kahnt, J; Linne, U; Shima, S
Biosynthesis of the iron-guanylylpyridinol cofactor of [fe]-hydrogenase in methanogenic archaea as elucidated by stable-isotope labeling.
J Am Chem Soc
134
3271-80
2012
Archaea
Automatic Mining of ENzyme DAta
Kaluarachchi, H; Altenstein, M; Sugumar, SR; Balbach, J; Zamble, DB; Haupt, C
Nickel Binding and [NiFe]-Hydrogenase Maturation by the Metallochaperone SlyD with a Single Metal-Binding Site in Escherichia coli.
J Mol Biol
417
28-35
2012
Escherichia coli
Automatic Mining of ENzyme DAta
Volbeda, A; Amara, P; Darnault, C; Mouesca, JM; Parkin, A; Roessler, MM; Armstrong, FA; Fontecilla-Camps, JC
X-ray crystallographic and computational studies of the O2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli.
Proc Natl Acad Sci U S A
109
5305-10
2012
Escherichia coli
Automatic Mining of ENzyme DAta
Ballor, NR; Leadbetter, JR
Patterns of [FeFe] hydrogenase diversity in the gut microbial communities of lignocellulose-feeding higher termites.
Appl Environ Microbiol
78
5368-74
2012
Termitidae
Automatic Mining of ENzyme DAta
Roessler, MM; Evans, RM; Davies, RA; Harmer, J; Armstrong, FA
EPR Spectroscopic Studies of the Fe-S Clusters in the O(2)-Tolerant [NiFe]-Hydrogenase Hyd-1 from Escherichia coli and Characterization of the Unique [4Fe-3S] Cluster by HYSCORE.
J Am Chem Soc
134
15581-94
2012
Escherichia coli
Automatic Mining of ENzyme DAta
Tominaga, T; Watanabe, S; Matsumi, R; Atomi, H; Imanaka, T; Miki, K
Structure of the [NiFe]-hydrogenase maturation protein HypF from Thermococcus kodakarensis KOD1.
Acta Crystallogr Sect F Struct Biol Cryst Commun
68
1153-7
2012
Thermococcus kodakarensis KOD1
Automatic Mining of ENzyme DAta
Albareda, M; Manyani, H; Imperial, J; Brito, B; Ruiz-Argüeso, T; Böck, A; Palacios, JM
Dual role of HupF in the biosynthesis of [NiFe] hydrogenase in Rhizobium leguminosarum.
BMC Microbiol
12
256
2012
Rhizobium leguminosarum
Automatic Mining of ENzyme DAta
Osuka, H; Shomura, Y; Komori, H; Shibata, N; Nagao, S; Higuchi, Y; Hirota, S
Photosensitivity of the Ni-A state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F with visible light.
Biochem Biophys Res Commun
430
284-8
2013
Desulfovibrio vulgaris str. 'Miyazaki F'
Automatic Mining of ENzyme DAta
Horch, M; Rippers, Y; Mroginski, MA; Hildebrandt, P; Zebger, I
Combining spectroscopy and theory to evaluate structural models of metalloenzymes: a case study on the soluble [NiFe] hydrogenase from Ralstonia eutropha.
Chemphyschem
14
185-91
2013
Cupriavidus necator, Cupriavidus necator H16
Automatic Mining of ENzyme DAta
Kuchenreuther, JM; Guo, Y; Wang, H; Myers, WK; George, SJ; Boyke, CA; Yoda, Y; Alp, EE; Zhao, J; Britt, RD; Swartz, JR; Cramer, SP
Nuclear resonance vibrational spectroscopy and electron paramagnetic resonance spectroscopy of 57Fe-enriched [FeFe] hydrogenase indicate stepwise assembly of the H-cluster.
Biochemistry
52
818-26
2013
Electron, Clostridium pasteurianum
Automatic Mining of ENzyme DAta
Roessler, MM; Evans, RM; Davies, RA; Harmer, J; Armstrong, FA
Correction to "EPR Spectroscopic Studies of the Fe-S Clusters in the O2-Tolerant [NiFe]-Hydrogenase Hyd-1 from Escherichia coli and Characterization of the Unique [4Fe-3S] Cluster by HYSCORE".
J Am Chem Soc
135
4159
2013
Escherichia coli
Automatic Mining of ENzyme DAta
Lie, TJ; Costa, KC; Pak, D; Sakesan, V; Leigh, JA
Phenotypic evidence that the function of the [Fe]-hydrogenase Hmd in Methanococcus maripaludis requires seven hcg (hmd co-occurring genes) but not hmdII.
FEMS Microbiol Lett
343
156-60
2013
Methanococcus maripaludis
Automatic Mining of ENzyme DAta
Schäfer, C; Friedrich, B; Lenz, O
Novel, oxygen-insensitive group 5 [NiFe]-hydrogenase in Ralstonia eutropha.
Appl Environ Microbiol
79
5137-45
2013
Cupriavidus necator, Actinobacteria
Automatic Mining of ENzyme DAta
Soboh, B; Stripp, ST; Bielak, C; Lindenstrauß, U; Braussemann, M; Javaid, M; Hallensleben, M; Granich, C; Herzberg, M; Heberle, J; Sawers, RG
The [NiFe]-hydrogenase accessory chaperones HypC and HybG of Escherichia coli are iron- and carbon dioxide-binding proteins.
FEBS Lett
587
2512-6
2013
Escherichia coli
Automatic Mining of ENzyme DAta
Greco, C
Towards [NiFe]-hydrogenase biomimetic models that couple H2 binding with functionally relevant intramolecular electron transfers: a quantum chemical study.
Dalton Trans
42
13845-54
2013
Electron
Automatic Mining of ENzyme DAta
Riethausen, J; Rüdiger, O; Gärtner, W; Lubitz, W; Shafaat, HS
Spectroscopic and Electrochemical Characterization of the [NiFeSe] Hydrogenase from Desulfovibrio vulgaris Miyazaki F: Reversible Redox Behavior and Interactions between Electron Transfer Centers.
Chembiochem
14
1714-9
2013
Desulfovibrio vulgaris str. 'Miyazaki F', Electron
Automatic Mining of ENzyme DAta
Long, H; King, PW; Chang, CH
Proton transport in Clostridium pasteurianum [FeFe] hydrogenase I: a computational study.
J Phys Chem B
118
890-900
2014
Clostridium pasteurianum
Automatic Mining of ENzyme DAta
Yonemoto, IT; Smith, HO; Weyman, PD
Designed surface residue substitutions in [NiFe] hydrogenase that improve electron transfer characteristics.
Int J Mol Sci
16
2020-33
2015
Alteromonas macleodii, Electron
Automatic Mining of ENzyme DAta
Adamska-Venkatesh, A; Simmons, TR; Siebel, JF; Artero, V; Fontecave, M; Reijerse, E; Lubitz, W
Artificially maturated [FeFe] hydrogenase from Chlamydomonas reinhardtii: a HYSCORE and ENDOR study of a non-natural H-cluster.
Phys Chem Chem Phys
17
5421-30
2015
Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Taketa, M; Nakagawa, H; Habukawa, M; Osuka, H; Kihira, K; Komori, H; Shibata, N; Ishii, M; Igarashi, Y; Nishihara, H; Yoon, KS; Ogo, S; Shomura, Y; Higuchi, Y
Crystallization and preliminary X-ray analysis of the NAD+-reducing [NiFe] hydrogenase from Hydrogenophilus thermoluteolus TH-1.
Acta Crystallogr F Struct Biol Commun
71
96-9
2015
Hydrogenophilus thermoluteolus IFO 14978
Automatic Mining of ENzyme DAta
Huang, GF; Wu, XB; Bai, LP; Liu, K; Jiang, LJ; Long, MN; Chen, QX
Improved O2-tolerance in variants of a H2-evolving [NiFe]-hydrogenase from Klebsiella oxytoca HP1.
FEBS Lett
2015
Klebsiella oxytoca HP1
Automatic Mining of ENzyme DAta
Greene, BL; Wu, CH; McTernan, PM; Adams, MW; Dyer, RB
Proton-coupled electron transfer dynamics in the catalytic mechanism of a [NiFe]-hydrogenase.
J Am Chem Soc
137
4558-66
2015
Electron
Automatic Mining of ENzyme DAta
Tai, H; Nishikawa, K; Inoue, S; Higuchi, Y; Hirota, S
FT-IR Characterization of the Light-Induced Ni-L2 and Ni-L3 States of [NiFe] Hydrogenase from Desulfovibrio vulgaris Miyazaki F.
J Phys Chem B
119
13668-74
2015
Desulfovibrio vulgaris str. 'Miyazaki F'
Automatic Mining of ENzyme DAta
Petrenko, A; Stein, M
Rates and Routes of Electron Transfer of [NiFe]-Hydrogenase in an Enzymatic Fuel Cell.
J Phys Chem B
119
13870-82
2015
Electron
Automatic Mining of ENzyme DAta
Hartwig, S; Thomas, C; Krumova, N; Quitzke, V; Türkowsky, D; Jehmlich, N; Adrian, L; Sawers, RG
Heterologous complementation studies in Escherichia coli with the Hyp accessory protein machinery from Chloroflexi provide insight into [NiFe]-hydrogenase large subunit recognition by the HypC protein family.
Microbiology
161
2204-19
2015
Escherichia coli, Chloroflexi, Dehalococcoides mccartyi
Automatic Mining of ENzyme DAta
Kwan, P; McIntosh, CL; Jennings, DP; Hopkins, RC; Chandrayan, SK; Wu, CH; Adams, MW; Jones, AK
The [NiFe]-Hydrogenase of Pyrococcus furiosus Exhibits a New Type of Oxygen Tolerance.
J Am Chem Soc
137
13556-65
2015
Pyrococcus furiosus
Automatic Mining of ENzyme DAta
Radu, V; Frielingsdorf, S; Lenz, O; Jeuken, LJ
Reactivation from the Ni-B state in [NiFe] hydrogenase of Ralstonia eutropha is controlled by reduction of the superoxidised proximal cluster.
Chem Commun (Camb)
52
2632-5
2016
Cupriavidus necator
Automatic Mining of ENzyme DAta
Muhd Noor, ND; Nishikawa, K; Nishihara, H; Yoon, KS; Ogo, S; Higuchi, Y
Improved purification, crystallization and crystallographic study of Hyd-2-type [NiFe]-hydrogenase from Citrobacter sp. S-77.
Acta Crystallogr F Struct Biol Commun
72
53-8
2016
Citrobacter
Automatic Mining of ENzyme DAta
Nagy, IK; Kovács, KL; Rákhely, G; Maróti, G
HupO, a Novel Regulator Involved in Thiosulfate-Responsive Control of HupSL [NiFe]-Hydrogenase Synthesis in Thiocapsa roseopersicina.
Appl Environ Microbiol
82
2039-49
2016
Thiocapsa roseopersicina
Automatic Mining of ENzyme DAta
Greene, BL; Vansuch, GE; Wu, CH; Adams, MW; Dyer, RB
Glutamate Gated Proton-Coupled Electron Transfer Activity of a [NiFe]-Hydrogenase.
J Am Chem Soc
2016
Electron
Automatic Mining of ENzyme DAta
Kanai, T; Yasukochi, A; Simons, JR; Scott, JW; Fukuda, W; Imanaka, T; Atomi, H
Genetic analyses of the functions of [NiFe]-hydrogenase maturation endopeptidases in the hyperthermophilic archaeon Thermococcus kodakarensis.
Extremophiles
21
27-39
2017
Thermococcus kodakarensis, archaeon
Automatic Mining of ENzyme DAta
Lacasse, MJ; Douglas, CD; Zamble, DB
Mechanism of Selective Nickel Transfer from HypB to HypA, Escherichia coli [NiFe]-Hydrogenase Accessory Proteins.
Biochemistry
55
6821-6831
2016
Escherichia coli
Automatic Mining of ENzyme DAta
Petrenko, A; Stein, M
Distal [FeS]-Cluster Coordination in [NiFe]-Hydrogenase Facilitates Intermolecular Electron Transfer.
Int J Mol Sci
18
2017
Electron
Automatic Mining of ENzyme DAta
Khorasani-Motlagh, M; Lacasse, MJ; Zamble, DB
High-affinity metal binding by the Escherichia coli [NiFe]-hydrogenase accessory protein HypB is selectively modulated by SlyD.
Metallomics
9
482-493
2017
Escherichia coli, insertion sequences
Automatic Mining of ENzyme DAta
Senger, M; Stripp, ST; Soboh, B
Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis.
J Biol Chem
292
11670-11681
2017
insertion sequences
Automatic Mining of ENzyme DAta
Adamson, H; Robinson, M; Wright, JJ; Flanagan, LA; Walton, J; Elton, D; Gavaghan, DJ; Bond, AM; Roessler, MM; Parkin, A
Retuning the Catalytic Bias and Overpotential of a [NiFe]-Hydrogenase via a Single Amino Acid Exchange at the Electron Entry/Exit Site.
J Am Chem Soc
139
10677-10686
2017
Electron
Automatic Mining of ENzyme DAta
Avilan, L; Roumezi, B; Risoul, V; Bernard, CS; Kpebe, A; Belhadjhassine, M; Rousset, M; Brugna, M; Latifi, A
Phototrophic hydrogen production from a clostridial [FeFe] hydrogenase expressed in the heterocysts of the cyanobacterium Nostoc PCC 7120.
Appl Microbiol Biotechnol
102
5775-5783
2018
Nostoc sp., Clostridium acetobutylicum, Nostoc sp. PCC 7120 = FACHB-418
Automatic Mining of ENzyme DAta
Thomas, C; Waclawek, M; Nutschan, K; Pinske, C; Sawers, RG
The Extended C-Terminal ?-Helix of the HypC Chaperone Restricts Recognition of Large Subunit Precursors by the Hyp-Scaffold Machinery during [NiFe]-Hydrogenase Maturation in Escherichia coli.
J Mol Microbiol Biotechnol
28
87-97
2018
Escherichia coli
Automatic Mining of ENzyme DAta
Wagner, T; Huang, G; Ermler, U; Shima, S
How [Fe]-hydrogenase from Methanothermobacter is protected against light and oxidative stress.
Angew Chem Int Ed Engl
2018
Methanothermobacter
Automatic Mining of ENzyme DAta
Tsurumaru, H; Ito, N; Mori, K; Wakai, S; Uchiyama, T; Iino, T; Hosoyama, A; Ataku, H; Nishijima, K; Mise, M; Shimizu, A; Harada, T; Horikawa, H; Ichikawa, N; Sekigawa, T; Jinno, K; Tanikawa, S; Yamazaki, J; Sasaki, K; Yamazaki, S; Fujita, N; Harayama, S
An extracellular [NiFe] hydrogenase mediating iron corrosion is encoded in a genetically unstable genomic island in Methanococcus maripaludis.
Sci Rep
8
15149
2018
Methanococcus maripaludis
Automatic Mining of ENzyme DAta
Zacarias, S; Vélez, M; Pita, M; De Lacey, AL; Matias, PM; Pereira, IAC
Characterization of the [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough.
Methods Enzymol
613
169-201
2018
Desulfovibrio vulgaris str. Hildenborough, Bacteria
Automatic Mining of ENzyme DAta
Dragomirova, N; Rothe, P; Schwoch, S; Hartwig, S; Pinske, C; Sawers, RG
Insights Into the Redox Sensitivity of Chloroflexi Hup-Hydrogenase Derived From Studies in Escherichia coli: Merits and Pitfalls of Heterologous [NiFe]-Hydrogenase Synthesis.
Front Microbiol
9
2837
2018
Escherichia coli, Chloroflexi
Automatic Mining of ENzyme DAta
Khorasani-Motlagh, M; Noroozifar, M; Kerman, K; Zamble, DB
Complex formation between the Escherichia coli [NiFe]-hydrogenase nickel maturation factors.
Biometals
2019
Escherichia coli, insertion sequences
Automatic Mining of ENzyme DAta
Lacasse, MJ; Summers, KL; Khorasani-Motlagh, M; George, GN; Zamble, DB
Bimodal Nickel-Binding Site on Escherichia coli [NiFe]-Hydrogenase Metallochaperone HypA.
Inorg Chem
2019
Archaea, Bacteria, Escherichia coli
Automatic Mining of ENzyme DAta
Rodríguez-Maciá, P; Birrell, JA; Lubitz, W; Rüdiger, O
Electrochemical Investigations on the Inactivation of the [FeFe] Hydrogenase from Desulfovibrio desulfuricans by O2 or Light under Hydrogen-Producing Conditions.
Chempluschem
82
540-545
2017
Desulfovibrio desulfuricans
Automatic Mining of ENzyme DAta
Schmitz, RA; Pol, A; Mohammadi, SS; Hogendoorn, C; van Gelder, AH; Jetten, MSM; Daumann, LJ; Op den Camp, HJM
The thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV oxidizes subatmospheric H2 with a high-affinity, membrane-associated [NiFe] hydrogenase.
ISME J
2020
Methylacidiphilum fumariolicum SolV, Soldado orthonairovirus
Automatic Mining of ENzyme DAta
Ruff, A; Szczesny, J; Zacarias, S; Pereira, IAC; Plumeré, N; Schuhmann, W
Protection and Reactivation of the [NiFeSe] Hydrogenase from Desulfovibrio vulgaris Hildenborough under Oxidative Conditions.
ACS Energy Lett
2
964-968
2017
Desulfovibrio vulgaris str. Hildenborough
Automatic Mining of ENzyme DAta
Szczesny, J; Birrell, JA; Conzuelo, F; Lubitz, W; Ruff, A; Schuhmann, W
Redox-Polymer-Based High-Current-Density Gas-Diffusion H2 -Oxidation Bioanode Using [FeFe] Hydrogenase from Desulfovibrio desulfuricans in a Membrane-free Biofuel Cell.
Angew Chem Int Ed Engl
2020
Desulfovibrio desulfuricans, Desulfovibrio
Automatic Mining of ENzyme DAta
Corrigan, PS; Tirsch, JL; Silakov, A
Investigation of the Unusual Ability of the [FeFe] Hydrogenase from Clostridium beijerinckii to Access an O2-Protected State.
J Am Chem Soc
142
12409-12419
2020
Clostridium beijerinckii
Automatic Mining of ENzyme DAta
Lahme, S; Mand, J; Longwell, J; Smith, R; Enning, D
Severe Corrosion of Carbon Steel in Oil Field Produced Water Can Be Linked to Methanogenic Archaea Containing a Special Type of [NiFe] Hydrogenase.
Appl Environ Microbiol
87
2021
Archaea, Methanococcus maripaludis OS7
Automatic Mining of ENzyme DAta
Fan, Q; Caserta, G; Lorent, C; Lenz, O; Neubauer, P; Gimpel, M
Optimization of Culture Conditions for Oxygen-Tolerant Regulatory [NiFe]-Hydrogenase Production from Ralstonia eutropha H16 in Escherichia coli.
Microorganisms
9
2021
Escherichia coli, Cupriavidus necator H16
Automatic Mining of ENzyme DAta
Caserta, G; Lorent, C; Ciaccafava, A; Keck, M; Breglia, R; Greco, C; Limberg, C; Hildebrandt, P; Cramer, SP; Zebger, I; Lenz, O
The large subunit of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha - a minimal hydrogenase?
Chem Sci
11
5453-5465
2020
Cupriavidus necator
Automatic Mining of ENzyme DAta
Stripp, ST; Oltmanns, J; Müller, CS; Ehrenberg, D; Schlesinger, R; Heberle, J; Adrian, L; Schünemann, V; Pierik, AJ; Soboh, B
Electron inventory of the iron-sulfur scaffold complex HypCD essential in [NiFe]-hydrogenase cofactor assembly.
Biochem J
478
3281-3295
2021
Electron
Automatic Mining of ENzyme DAta
Menon, NK; Robbins, J; Peck, HD; Chatelus, CY; Choi, ES; Przybyla, AE
Cloning and sequencing of a putative Escherichia coli [NiFe] hydrogenase-1 operon containing six open reading frames.
J Bacteriol
172
1969-77
1990
Escherichia coli
Automatic Mining of ENzyme DAta
van den Berg, WA; Stokkermans, JP; van Dongen, WM
The operon for the Fe-hydrogenase in Desulfovibrio vulgaris (Hildenborough): mapping of the transcript and regulation of expression.
FEMS Microbiol Lett
110
85-90
1993
Desulfovibrio vulgaris
Automatic Mining of ENzyme DAta
Gross, R; Simon, J
The hydE gene is essential for the formation of Wolinella succinogenes NiFe-hydrogenase.
FEMS Microbiol Lett
227
197-202
2003
Bacteria
Automatic Mining of ENzyme DAta
Czech, I; Silakov, A; Lubitz, W; Happe, T
The [FeFe]-hydrogenase maturase HydF from Clostridium acetobutylicum contains a CO and CN- ligated iron cofactor.
FEBS Lett
584
638-42
2010
Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Berto, P; D'Adamo, S; Bergantino, E; Vallese, F; Giacometti, GM; Costantini, P
The cyanobacterium Synechocystis sp. PCC 6803 is able to express an active [FeFe]-hydrogenase without additional maturation proteins.
Biochem Biophys Res Commun
405
678-83
2011
Synechococcus elongatus PCC 7942 = FACHB-805, Clostridium pasteurianum, Synechococcus elongatus PCC 6301
Automatic Mining of ENzyme DAta
Schmidt, O; Wüst, PK; Hellmuth, S; Borst, K; Horn, MA; Drake, HL
Novel [NiFe]- and [FeFe]-Hydrogenase Gene Transcripts Indicative of Active Facultative Aerobes and Obligate Anaerobes in Earthworm Gut Contents.
Appl Environ Microbiol
77
5842-50
2011
Enterobacteriaceae, Aeromonadaceae
Automatic Mining of ENzyme DAta
Meyer, J; Gagnon, J
Primary structure of hydrogenase I from Clostridium pasteurianum.
Biochemistry
30
9697-704
1991
Clostridium pasteurianum, Desulfovibrio vulgaris
Automatic Mining of ENzyme DAta
Pandelia, ME; Infossi, P; Giudici-Orticoni, MT; Lubitz, W
The oxygen-tolerant hydrogenase I from Aquifex aeolicus weakly interacts with carbon monoxide: an electrochemical and time-resolved FTIR study.
Biochemistry
49
8873-81
2010
Aquifex aeolicus, bacterium
Automatic Mining of ENzyme DAta
Massanz, C; Friedrich, B
Amino acid replacements at the H2-activating site of the NAD-reducing hydrogenase from Alcaligenes eutrophus.
Biochemistry
38
14330-7
1999
Desulfovibrio gigas
Automatic Mining of ENzyme DAta
Eckert, C; Boehm, M; Carrieri, D; Yu, J; Dubini, A; Nixon, PJ; Maness, PC
Genetic analysis of the Hox hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 reveals subunit roles in association, assembly, maturation, and function.
J Biol Chem
287
43502-15
2012
Bacteria, Cyanobacteria, Electron
Automatic Mining of ENzyme DAta
Nicolet, Y; Piras, C; Legrand, P; Hatchikian, CE; Fontecilla-Camps, JC
Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center.
Structure Fold Des
7
13-23
1999
Desulfovibrio desulfuricans
Automatic Mining of ENzyme DAta
Chen, HC; Newton, AJ; Melis, A
Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2 evolution in Chlamydomonas reinhardtii.
Photosynth Res
84
289-96
2005
Chlamydomonas
Automatic Mining of ENzyme DAta
de Reuse, H; Vinella, D; Cavazza, C
Common themes and unique proteins for the uptake and trafficking of nickel, a metal essential for the virulence of Helicobacter pylori.
Front Cell Infect Microbiol
3
94
2013
Helicobacter pylori
Automatic Mining of ENzyme DAta
Lebrette, H; Brochier-Armanet, C; Zambelli, B; de Reuse, H; Borezée-Durant, E; Ciurli, S; Cavazza, C
Promiscuous nickel import in human pathogens: structure, thermodynamics, and evolution of extracytoplasmic nickel-binding proteins.
Structure
22
1421-32
2014
Homo sapiens, Bacteria
Automatic Mining of ENzyme DAta
Vinella, D; Fischer, F; Vorontsov, E; Gallaud, J; Malosse, C; Michel, V; Cavazza, C; Robbe-Saule, M; Richaud, P; Chamot-Rooke, J; Brochier-Armanet, C; De Reuse, H
Evolution of Helicobacter: Acquisition by Gastric Species of Two Histidine-Rich Proteins Essential for Colonization.
PLoS Pathog
11
e1005312
2015
Helicobacter pylori, Homo sapiens
Automatic Mining of ENzyme DAta
Hu, HQ; Huang, HT; Maroney, MJ
The Helicobacter pylori HypA·UreE2 Complex Contains a Novel High-Affinity Ni(II)-Binding Site.
Biochemistry
57
2932-2942
2018
Helicobacter pylori
Automatic Mining of ENzyme DAta
Tersteegen, A; Hedderich, R
Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins.
Eur J Biochem
264
930-43
1999
Methanothermobacter thermautotrophicus
Automatic Mining of ENzyme DAta
Schut, GJ; Boyd, ES; Peters, JW; Adams, MW
The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications.
FEMS Microbiol Rev
2012
Pyrococcus furiosus, archaeon
Automatic Mining of ENzyme DAta
Xiong, J; Chan, D; Guo, X; Chang, F; Chen, M; Wang, Q; Song, X; Wu, C
Hydrogen production driven by formate oxidation in Shewanella oneidensis MR-1.
Appl Microbiol Biotechnol
104
5579-5591
2020
Bacteria, Shewanella oneidensis, Electron
Automatic Mining of ENzyme DAta
Rossi, M; Pollock, WB; Reij, MW; Keon, RG; Fu, R; Voordouw, G
The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex.
J Bacteriol
175
4699-711
1993
Desulfovibrio
Automatic Mining of ENzyme DAta
Fauque, G; Peck, HD; Moura, JJ; Huynh, BH; Berlier, Y; DerVartanian, DV; Teixeira, M; Przybyla, AE; Lespinat, PA; Moura, I
The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio.
FEMS Microbiol Rev
4
299-344
1988
Escherichia
Automatic Mining of ENzyme DAta
Kleihues, L; Lenz, O; Bernhard, M; Buhrke, T; Friedrich, B
The H(2) sensor of Ralstonia eutropha is a member of the subclass of regulatory [NiFe] hydrogenases.
J Bacteriol
182
2716-24
2000
Electron
Automatic Mining of ENzyme DAta
Happe, T; Hemschemeier, A; Winkler, M; Kaminski, A
Hydrogenases in green algae: do they save the algae's life and solve our energy problems?
Trends Plant Sci
7
246-50
2002
Electron
Automatic Mining of ENzyme DAta
Forestier, M; King, P; Zhang, L; Posewitz, M; Schwarzer, S; Happe, T; Ghirardi, ML; Seibert, M
Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions.
Eur J Biochem
270
2750-8
2003
Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Mander, GJ; Pierik, AJ; Huber, H; Hedderich, R
Two distinct heterodisulfide reductase-like enzymes in the sulfate-reducing archaeon Archaeoglobus profundus.
Eur J Biochem
271
1106-16
2004
Methanothermobacter
Automatic Mining of ENzyme DAta
Laurinavichene, TV; Rákhely, G; Kovács, KL; Tsygankov, AA
The effect of sulfur compounds on H(2) evolution/consumption reactions, mediated by various hydrogenases, in the purple sulfur bacterium, Thiocapsa roseopersicina.
Arch Microbiol
188
403-10
2007
bacterium, Thiocapsa roseopersicina Bbs
Automatic Mining of ENzyme DAta
da Silva, SM; Venceslau, SS; Fernandes, CL; Valente, FM; Pereira, IA
Hydrogen as an energy source for the human pathogen Bilophila wadsworthia.
Antonie Van Leeuwenhoek
93
381-90
2008
bacterium
Automatic Mining of ENzyme DAta
Benoit, SL; Maier, RJ
Hydrogen and nickel metabolism in helicobacter species.
Ann N Y Acad Sci
1125
242-51
2008
Helicobacter
Automatic Mining of ENzyme DAta
Weyman, PD; Vargas, WA; Chuang, RY; Chang, Y; Smith, HO; Xu, Q
Heterologous Expression of Alteromonas macleodii and Thiocapsa roseopersicina [NiFe] Hydrogenases in Escherichia coli.
Microbiology
2011
Alteromonas macleodii
Automatic Mining of ENzyme DAta
Ducat, DC; Sachdeva, G; Silver, PA
Rewiring hydrogenase-dependent redox circuits in cyanobacteria.
Proc Natl Acad Sci U S A
108
3941-6
2011
Clostridium acetobutylicum, Synechococcus elongatus, Synechococcus elongatus PCC 6301
Automatic Mining of ENzyme DAta
Bowman, L; Balbach, J; Walton, J; Sargent, F; Parkin, A
Biosynthesis of Salmonella enterica [NiFe]-hydrogenase-5: probing the roles of system-specific accessory proteins.
J Biol Inorg Chem
2016
Cupriavidus necator
Automatic Mining of ENzyme DAta
Therien, JB; Artz, JH; Poudel, S; Hamilton, TL; Liu, Z; Noone, SM; Adams, MWW; King, PW; Bryant, DA; Boyd, ES; Peters, JW
The Physiological Functions and Structural Determinants of Catalytic Bias in the [FeFe]-Hydrogenases CpI and CpII of Clostridium pasteurianum Strain W5.
Front Microbiol
8
1305
2017
Clostridium pasteurianum
Automatic Mining of ENzyme DAta
Voordouw, G; Menon, NK; LeGall, J; Choi, ES; Peck, HD; Przybyla, AE
Analysis and comparison of nucleotide sequences encoding the genes for [NiFe] and [NiFeSe] hydrogenases from Desulfovibrio gigas and Desulfovibrio baculatus.
J Bacteriol
171
2894-9
1989
Desulfovibrio gigas, Desulfomicrobium baculatum
Automatic Mining of ENzyme DAta
Matias, PM; Coelho, R; Pereira, IA; Coelho, AV; Thompson, AW; Sieker, LC; Gall, JL; Carrondo, MA
The primary and three-dimensional structures of a nine-haem cytochrome c from Desulfovibrio desulfuricans ATCC 27774 reveal a new member of the Hmc family.
Structure Fold Des
7
119-30
1999
Desulfovibrio desulfuricans
Automatic Mining of ENzyme DAta
Matias, PM; Saraiva, LM; Soares, CM; Coelho, AV; LeGall, J; Carrondo, MA
Nine-haem cytochrome c from Desulfovibrio desulfuricans ATCC 27774:primary sequence determination, crystallographic refinement at 1.8 and modelling studies of its interaction with the tetrahaem cytochrome c3.
J Biol Inorg Chem
4
478-94
1999
Desulfovibrio desulfuricans
Automatic Mining of ENzyme DAta
Horner, DS; Foster, PG; Embley, TM
Iron hydrogenases and the evolution of anaerobic eukaryotes.
Mol Biol Evol
17
1695-709
2000
Desulfovibrio vulgaris, Entamoeba, Eubacterium, eukaryota, Nyctotherus, Spironucleus, Trichomonas, Trichomonas vaginalis
Automatic Mining of ENzyme DAta
Heidelberg, JF; Paulsen, IT; Nelson, KE; Gaidos, EJ; Nelson, WC; Read, TD; Eisen, JA; Seshadri, R; Ward, N; Methe, B; Clayton, RA; Meyer, T; Tsapin, A; Scott, J; Beanan, M; Brinkac, L; Daugherty, S; DeBoy, RT; Dodson, RJ; Durkin, AS; Haft, DH; Kolonay, JF; Madupu, R; Peterson, JD; Umayam, LA; White, O; Wolf, AM; Vamathevan, J; Weidman, J; Impraim, M; Lee, K; Berry, K; Lee, C; Mueller, J; Khouri, H; Gill, J; Utterback, TR; McDonald, LA; Feldblyum, TV; Smith, HO; Venter, JC; Nealson, KH; Fraser, CM
Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis.
Nat Biotechnol
20
1118-23
2002
Shewanella oneidensis, Electron
Automatic Mining of ENzyme DAta
Girbal, L; von Abendroth, G; Winkler, M; Benton, PM; Meynial-Salles, I; Croux, C; Peters, JW; Happe, T; Soucaille, P
Homologous and heterologous overexpression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activities.
Appl Environ Microbiol
71
2777-81
2005
Chlamydomonas reinhardtii, Tetradesmus obliquus, Clostridium acetobutylicum ATCC 824
Automatic Mining of ENzyme DAta
Caffrey, SM; Park, HS; Voordouw, JK; He, Z; Zhou, J; Voordouw, G
Function of periplasmic hydrogenases in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.
J Bacteriol
189
6159-67
2007
Electron
Automatic Mining of ENzyme DAta
Pereira, PM; He, Q; Xavier, AV; Zhou, J; Pereira, IA; Louro, RO
Transcriptional response of Desulfovibrio vulgaris Hildenborough to oxidative stress mimicking environmental conditions.
Arch Microbiol
189
451-61
2008
Desulfovibrio vulgaris
Automatic Mining of ENzyme DAta
Chung, KC; Cao, L; Dias, AV; Pickering, IJ; George, GN; Zamble, DB
A high-affinity metal-binding peptide from Escherichia coli HypB.
J Am Chem Soc
130
14056-7
2008
Escherichia coli
Automatic Mining of ENzyme DAta
Kaluarachchi, H; Zhang, JW; Zamble, DB
Escherichia coli SlyD, more than a Ni(II) reservoir.
Biochemistry
50
10761-3
2011
insertion sequences
Automatic Mining of ENzyme DAta
Ananyev, GM; Skizim, NJ; Dismukes, GC
Enhancing biological hydrogen production from cyanobacteria by removal of excreted products.
J Biotechnol
2012
Arthrospira, cyanobacterium
Automatic Mining of ENzyme DAta
Evans, RM; Parkin, A; Roessler, MM; Murphy, BJ; Adamson, H; Lukey, MJ; Sargent, F; Volbeda, A; Fontecilla-Camps, JC; Armstrong, FA
Principles of sustained enzymatic hydrogen oxidation in the presence of oxygen--the crucial influence of high potential Fe-S clusters in the electron relay of [NiFe]-hydrogenases.
J Am Chem Soc
135
2694-707
2013
Escherichia coli
Automatic Mining of ENzyme DAta
Cheng, T; Li, H; Yang, X; Xia, W; Sun, H
Interaction of SlyD with HypB of Helicobacter pylori facilitates nickel trafficking.
Metallomics
5
804-7
2013
Helicobacter pylori
Automatic Mining of ENzyme DAta
Mao, Y; Xia, Y; Wang, Z; Zhang, T
Reconstructing a Thauera genome from a hydrogenotrophic-denitrifying consortium using metagenomic sequence data.
Appl Microbiol Biotechnol
98
6885-95
2014
Thauera, Thauera aminoaromatica
Automatic Mining of ENzyme DAta
Albareda, M; Rodrigue, A; Brito, B; Ruiz-Argüeso, T; Imperial, J; Mandrand-Berthelot, MA; Palacios, J
Rhizobium leguminosarum HupE is a highly-specific diffusion facilitator for nickel uptake.
Metallomics
2015
Rhizobium leguminosarum
Automatic Mining of ENzyme DAta
Kelly, WJ; Leahy, SC; Li, D; Perry, R; Lambie, SC; Attwood, GT; Altermann, E
The complete genome sequence of the rumen methanogen Methanobacterium formicicum BRM9.
Stand Genomic Sci
9
15
2014
Methanobacteriaceae
Automatic Mining of ENzyme DAta
Greening, C; Carere, CR; Rushton-Green, R; Harold, LK; Hards, K; Taylor, MC; Morales, SE; Stott, MB; Cook, GM
Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging.
Proc Natl Acad Sci U S A
112
10497-502
2015
bacterium
Automatic Mining of ENzyme DAta
Kanno, M; Constant, P; Tamaki, H; Kamagata, Y
Detection and Isolation of Plant-Associated Bacteria Scavenging Atmospheric Molecular Hydrogen.
Environ Microbiol
2015
Bacteria, plant
Automatic Mining of ENzyme DAta
An, D; Dong, X; An, A; Park, HS; Strous, M; Voordouw, G
Metagenomic Analysis Indicates Epsilonproteobacteria as a Potential Cause of Microbial Corrosion in Pipelines Injected with Bisulfite.
Front Microbiol
7
28
2016
Epsilonproteobacteria, Sulfurovum, Sulfuricurvum
Automatic Mining of ENzyme DAta
Martins, M; Mourato, C; Morais-Silva, FO; Rodrigues-Pousada, C; Voordouw, G; Wall, JD; Pereira, IA
Electron transfer pathways of formate-driven H2 production in Desulfovibrio.
Appl Microbiol Biotechnol
100
8135-46
2016
Desulfovibrio vulgaris
Automatic Mining of ENzyme DAta
Wang, M; Zhao, Q; Li, L; Niu, K; Li, Y; Wang, F; Jiang, B; Liu, K; Jiang, Y; Fang, X
Contributing factors in the improvement of cellulosic H2 production in Clostridium thermocellum/Thermoanaerobacterium co-cultures.
Appl Microbiol Biotechnol
100
8607-20
2016
Thermoanaerobacterium thermosaccharolyticum
Automatic Mining of ENzyme DAta
Wu, CH; Haja, DK; Adams, MWW
Cytoplasmic and membrane-bound hydrogenases from Pyrococcus furiosus.
Methods Enzymol
613
153-168
2018
Pyrococcus furiosus
Automatic Mining of ENzyme DAta
Zhu, L; Gong, T; Wood, TL; Yamasaki, R; Wood, TK
?54 -Dependent regulator DVU2956 switches Desulfovibrio vulgaris from biofilm formation to planktonic growth and regulates hydrogen sulfide production.
Environ Microbiol
2019
Electron
Automatic Mining of ENzyme DAta
Mohammadi, SS; Schmitz, RA; Pol, A; Berben, T; Jetten, MSM; Op den Camp, HJM
The Acidophilic Methanotroph Methylacidimicrobium tartarophylax 4AC Grows as Autotroph on H2 Under Microoxic Conditions.
Front Microbiol
10
2352
2019
Methylacidimicrobium tartarophylax
Automatic Mining of ENzyme DAta
Artz, JH; Tokmina-Lukaszewska, M; Mulder, DW; Lubner, CE; Gutekunst, K; Appel, J; Bothner, B; Boehm, M; King, PW
The structure and reactivity of the HoxEFU complex from the cyanobacterium Synechocystis sp. PCC 6803.
J Biol Chem
295
9445-9454
2020
Electron
Automatic Mining of ENzyme DAta
Sanchez, MLK; Konecny, SE; Narehood, SM; Reijerse, EJ; Lubitz, W; Birrell, JA; Dyer, RB
The Laser-Induced Potential Jump: A Method for Rapid Electron Injection into Oxidoreductase Enzymes.
J Phys Chem B
2020
Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Giguere, AT; Eichorst, SA; Meier, DV; Herbold, CW; Richter, A; Greening, C; Woebken, D
Acidobacteria are active and abundant members of diverse atmospheric H2-oxidizing communities detected in temperate soils.
ISME J
15
363-376
2021
Bacteria
Automatic Mining of ENzyme DAta
Castner, AT; Johnson, BA; Cohen, SM; Ott, S
Mimicking the Electron Transport Chain and Active Site of [FeFe] Hydrogenases in One Metal-Organic Framework: Factors That Influence Charge Transport.
J Am Chem Soc
143
7991-7999
2021
Electron
Automatic Mining of ENzyme DAta
Kwon, S; Nishitani, Y; Hirao, Y; Kanai, T; Atomi, H; Miki, K
Structure of a [NiFe] hydrogenase maturation protease HycI provides insights into its substrate selectivity.
Biochem Biophys Res Commun
498
782-788
2018
Thermococcus kodakarensis
Automatic Mining of ENzyme DAta
Nivière, V; Wong, SL; Voordouw, G
Site-directed mutagenesis of the hydrogenase signal peptide consensus box prevents export of a beta-lactamase fusion protein.
J Gen Microbiol
138
2173-83
1992
Escherichia coli, Desulfovibrio vulgaris str. Hildenborough
Automatic Mining of ENzyme DAta
Kimura, K; Suzuki, A; Inokuchi, H; Yagi, T
Hydrogenase activity in the dry state: isotope exchange and reversible oxidoreduction of cytochrome c3.
Biochim Biophys Acta
567
96-105
1979
Electron, Desulfovibrio, Memnoniella mori
Automatic Mining of ENzyme DAta
Yagi, T
Spectral and kinetic abnormality during the reduction of cytochrome c3 catalyzed by hydrogenase with hydrogen.
Biochim Biophys Acta
767
288-94
1984
Electron
Automatic Mining of ENzyme DAta
Hilhorst, R; Laane, C; Veeger, C
Photosensitized production of hydrogen by hydrogenase in reversed micelles.
Proc Natl Acad Sci U S A
79
3927-3930
1982
Desulfovibrio vulgaris, Electron
Automatic Mining of ENzyme DAta
McGlynn, SE; Ruebush, SS; Naumov, A; Nagy, LE; Dubini, A; King, PW; Broderick, JB; Posewitz, MC; Peters, JW
In vitro activation of [FeFe] hydrogenase: new insights into hydrogenase maturation.
J Biol Inorg Chem
12
443-7
2007
Escherichia coli
Automatic Mining of ENzyme DAta
Lojou, E; Luo, X; Brugna, M; Candoni, N; Dementin, S; Giudici-Orticoni, MT
Biocatalysts for fuel cells: efficient hydrogenase orientation for H(2) oxidation at electrodes modified with carbon nanotubes.
J Biol Inorg Chem
13
1157-67
2008
Desulfovibrio fructosivorans
Automatic Mining of ENzyme DAta
Galinato, MG; Whaley, CM; Lehnert, N
Vibrational analysis of the model complex (mu-edt)[Fe(CO)(3)](2) and comparison to iron-only hydrogenase: the activation scale of hydrogenase model systems.
Inorg Chem
49
3201-15
2010
Electron
Automatic Mining of ENzyme DAta
Chan, KH; Li, T; Wong, CO; Wong, KB
Structural basis for GTP-dependent dimerization of hydrogenase maturation factor HypB.
PLoS One
7
e30547
2012
insertion sequences
Automatic Mining of ENzyme DAta
Chan, KH; Lee, KM; Wong, KB
Interaction between Hydrogenase Maturation Factors HypA and HypB Is Required for [NiFe]-Hydrogenase Maturation.
PLoS One
7
e32592
2012
insertion sequences
Automatic Mining of ENzyme DAta
Yagi, T; Higuchi, Y
Studies on hydrogenase.
Proc Jpn Acad Ser B Phys Biol Sci
89
16-33
2013
Ursidae, Electron
Automatic Mining of ENzyme DAta
Liu, J; Zorin, NA; Chen, M; Qian, DJ
Pd(II)-Directed Encapsulation of Hydrogenase within the Layer-by-Layer Multilayers of Carbon Nanotube Polyelectrolyte Used as a Heterogeneous Catalyst for Oxidation of Hydrogen.
Langmuir
31
6546-53
2015
Electron
Automatic Mining of ENzyme DAta
Harris, BJ; Cheng, X; Frymier, P
Structure and Function of Photosystem I-[FeFe] Hydrogenase Protein Fusions: An All-Atom Molecular Dynamics Study.
J Phys Chem B
120
599-609
2016
Electron
Automatic Mining of ENzyme DAta
Bai, L; Fujishiro, T; Huang, G; Koch, J; Takabayashi, A; Yokono, M; Tanaka, A; Xu, T; Hu, X; Ermler, U; Shima, S
Towards artificial methanogenesis: biosynthesis of the [Fe]-hydrogenase cofactor and characterization of the semi-synthetic hydrogenase.
Faraday Discuss
2017
Archaea
Automatic Mining of ENzyme DAta
Caputo, CA; Wang, L; Beranek, R; Reisner, E
Carbon nitride-TiO2 hybrid modified with hydrogenase for visible light driven hydrogen production.
Chem Sci
6
5690-5694
2015
Electron
Automatic Mining of ENzyme DAta
Harris, TGAA; Heidary, N; Kozuch, J; Frielingsdorf, S; Lenz, O; Mroginski, MA; Hildebrandt, P; Zebger, I; Fischer, A
In Situ Spectroelectrochemical Studies into the Formation and Stability of Robust Diazonium-Derived Interfaces on Gold Electrodes for the Immobilization of an Oxygen-Tolerant Hydrogenase.
ACS Appl Mater Interfaces
10
23380-23391
2018
Cupriavidus necator, bacterium
Automatic Mining of ENzyme DAta
Edwardes Moore, E; Andrei, V; Zacarias, S; Pereira, IAC; Reisner, E
Integration of a Hydrogenase in a Lead Halide Perovskite Photoelectrode for Tandem Solar Water Splitting.
ACS Energy Lett
5
232-237
2020
Desulfovibrio vulgaris str. Hildenborough
Automatic Mining of ENzyme DAta
Islam, ZF; Welsh, C; Bayly, K; Grinter, R; Southam, G; Gagen, EJ; Greening, C
A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth.
ISME J
14
2649-2658
2020
Acidithiobacillus ferrooxidans, Chloroflexus aggregans, Cyanobacteria, Gemmatimonas aurantiaca
Automatic Mining of ENzyme DAta
Higuchi, Y; Ogata, H; Miki, K; Yasuoka, N; Yagi, T
Removal of the bridging ligand atom at the Ni-Fe active site of [NiFe] hydrogenase upon reduction with H2, as revealed by X-ray structure analysis at 1.4 A resolution.
Structure Fold Des
7
549-56
1999
Desulfovibrio vulgaris, Electron
Automatic Mining of ENzyme DAta
Lyon, EJ; Georgakaki, IP; Reibenspies, JH; Darensbourg, MY
Carbon Monoxide and Cyanide Ligands in a Classical Organometallic Complex Model for Fe-Only Hydrogenase.
Angew Chem Int Ed Engl
38
3178-3180
1999
Desulfovibrio
Automatic Mining of ENzyme DAta
Bennett, B; Lemon, BJ; Peters, JW
Reversible carbon monoxide binding and inhibition at the active site of the Fe-only hydrogenase.
Biochemistry
39
7455-60
2000
Clostridium pasteurianum, Electron
Automatic Mining of ENzyme DAta
Cao, Z; Hall, MB
Modeling the active sites in metalloenzymes. 3. Density functional calculations on models for [Fe]-hydrogenase: structures and vibrational frequencies of the observed redox forms and the reaction mechanism at the Diiron Active Center.
J Am Chem Soc
123
3734-42
2001
Desulfovibrio vulgaris
Automatic Mining of ENzyme DAta
Musie, G; Farmer, PJ; Tuntulani, T; Reibenspies, JH; Darensbourg, MY
Influence of Sulfur Metalation on the Accessibility of the Ni(II/I) Couple in [N,N'-Bis(2-mercaptoethyl)-1,5-diazacyclooctanato]nickel(II): Insight into the Redox Properties of [NiFe]-Hydrogenase.
Inorg Chem
35
2176-2183
1996
Desulfovibrio gigas
Automatic Mining of ENzyme DAta
Posewitz, MC; King, PW; Smolinski, SL; Zhang, L; Seibert, M; Ghirardi, ML
Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase.
J Biol Chem
279
25711-20
2004
Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Cohen, J; Kim, K; Posewitz, M; Ghirardi, ML; Schulten, K; Seibert, M; King, P
Molecular dynamics and experimental investigation of H(2) and O(2) diffusion in [Fe]-hydrogenase.
Biochem Soc Trans
33
80-2
2005
Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Lenz, O; Gleiche, A; Strack, A; Friedrich, B
Requirements for heterologous production of a complex metalloenzyme: the membrane-bound [NiFe] hydrogenase.
J Bacteriol
187
6590-5
2005
plasmids, Cupriavidus necator H16
Automatic Mining of ENzyme DAta
Ihara, M; Nishihara, H; Yoon, KS; Lenz, O; Friedrich, B; Nakamoto, H; Kojima, K; Honma, D; Kamachi, T; Okura, I
Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I.
Photochem Photobiol
82
676-82
0
Cupriavidus necator H16, cyanobacterium, Thermosynechococcus elongatus
Automatic Mining of ENzyme DAta
Zilberman, S; Stiefel, EI; Cohen, MH; Car, R
Resolving the CO/CN ligand arrangement in CO-inactivated [FeFe] hydrogenase by first principles density functional theory calculations.
Inorg Chem
45
5715-7
2006
Clostridium pasteurianum
Automatic Mining of ENzyme DAta
Hoeben, FJ; Heller, I; Albracht, SP; Dekker, C; Lemay, SG; Heering, HA
Polymyxin-coated Au and carbon nanotube electrodes for stable [NiFe]-hydrogenase film voltammetry.
Langmuir
24
5925-31
2008
Allochromatium vinosum
Automatic Mining of ENzyme DAta
Schwartz, L; Eriksson, L; Lomoth, R; Teixidor, F; Viñas, C; Ott, S
Influence of an electron-deficient bridging o-carborane on the electronic properties of an [FeFe] hydrogenase active site model.
Dalton Trans
2379-81
2008
Electron
Automatic Mining of ENzyme DAta
McGlynn, SE; Shepard, EM; Winslow, MA; Naumov, AV; Duschene, KS; Posewitz, MC; Broderick, WE; Broderick, JB; Peters, JW
HydF as a scaffold protein in [FeFe] hydrogenase H-cluster biosynthesis.
FEBS Lett
582
2183-7
2008
Escherichia coli, Clostridium acetobutylicum
Automatic Mining of ENzyme DAta
Blackburn, JL; Svedruzic, D; McDonald, TJ; Kim, YH; King, PW; Heben, MJ
Raman spectroscopy of charge transfer interactions between single wall carbon nanotubes and [FeFe] hydrogenase.
Dalton Trans
5454-61
2008
Clostridium acetobutylicum
Automatic Mining of ENzyme DAta
Perra, A; Wang, Q; Blake, AJ; Davies, ES; McMaster, J; Wilson, C; Schröder, M
Unusual formation of a [NiSFe(2)(CO)(6)] cluster: a structural model for the inactive form of [NiFe] hydrogenase.
Dalton Trans
925-31
2009
Desulfovibrio vulgaris
Automatic Mining of ENzyme DAta
Hoeben, FJ; Meijer, FS; Dekker, C; Albracht, SP; Heering, HA; Lemay, SG
Toward single-enzyme molecule electrochemistry: [NiFe]-hydrogenase protein film voltammetry at nanoelectrodes.
ACS Nano
2
2497-504
2008
Allochromatium vinosum
Automatic Mining of ENzyme DAta
Pandelia, ME; Ogata, H; Currell, LJ; Flores, M; Lubitz, W
Probing intermediates in the activation cycle of [NiFe] hydrogenase by infrared spectroscopy: the Ni-SI(r) state and its light sensitivity.
J Biol Inorg Chem
2009
Desulfovibrio vulgaris str. 'Miyazaki F', bacterium
Automatic Mining of ENzyme DAta
Salomone-Stagni, M; Stellato, F; Whaley, CM; Vogt, S; Morante, S; Shima, S; Rauchfuss, TB; Meyer-Klaucke, W
The iron-site structure of [Fe]-hydrogenase and model systems: an X-ray absorption near edge spectroscopy study.
Dalton Trans
39
3057-64
2010
Methanocaldococcus
Automatic Mining of ENzyme DAta
Pandelia, ME; Ogata, H; Lubitz, W
Intermediates in the catalytic cycle of [NiFe] hydrogenase: functional spectroscopy of the active site.
Chemphyschem
11
1127-40
2010
Desulfovibrio vulgaris str. 'Miyazaki F', bacterium
Automatic Mining of ENzyme DAta
Liebgott, PP; de Lacey, AL; Burlat, B; Cournac, L; Richaud, P; Brugna, M; Fernandez, VM; Guigliarelli, B; Rousset, M; Léger, C; Dementin, S
Original design of an oxygen-tolerant [NiFe] hydrogenase: major effect of a valine-to-cysteine mutation near the active site.
J Am Chem Soc
133
986-97
2011
Desulfovibrio fructosivorans
Automatic Mining of ENzyme DAta
Shima, S; Schick, M; Kahnt, J; Ataka, K; Steinbach, K; Linne, U
Evidence for acyl-iron ligation in the active site of [Fe]-hydrogenase provided by mass spectrometry and infrared spectroscopy.
Dalton Trans
41
767-71
2012
Archaea
Automatic Mining of ENzyme DAta
Wang, PH; Blumberger, J
Mechanistic insight into the blocking of CO diffusion in [NiFe]-hydrogenase mutants through multiscale simulation.
Proc Natl Acad Sci U S A
109
6399-404
2012
Desulfovibrio fructosivorans
Automatic Mining of ENzyme DAta
Rippers, Y; Horch, M; Hildebrandt, P; Zebger, I; Mroginski, MA
Revealing the Absolute Configuration of the CO and CN(-) Ligands at the Active Site of a [NiFe] Hydrogenase.
Chemphyschem
2012
Cupriavidus necator
Automatic Mining of ENzyme DAta
Utesch, T; Millo, D; Castro, MA; Hildebrandt, P; Zebger, I; Mroginski, MA
Effect of the protonation degree of a self-assembled monolayer on the immobilization dynamics of a [NiFe] hydrogenase.
Langmuir
29
673-82
2013
Desulfovibrio gigas
Automatic Mining of ENzyme DAta
Sasaki, D; Watanabe, S; Matsumi, R; Shoji, T; Yasukochi, A; Tagashira, K; Fukuda, W; Kanai, T; Atomi, H; Imanaka, T; Miki, K
Identification and Structure of a Novel Archaeal HypB for [NiFe] Hydrogenase Maturation.
J Mol Biol
2013
Archaea, insertion sequences
Automatic Mining of ENzyme DAta
Healy, AJ; Ash, PA; Lenz, O; Vincent, KA
Attenuated total reflectance infrared spectroelectrochemistry at a carbon particle electrode; unmediated redox control of a [NiFe]-hydrogenase solution.
Phys Chem Chem Phys
15
7055-9
2013
Cupriavidus necator
Automatic Mining of ENzyme DAta
Yonemoto, IT; Matteri, CW; Nguyen, TA; Smith, HO; Weyman, PD
Dual organism design cycle reveals small subunit substitutions that improve [NiFe] hydrogenase hydrogen evolution.
J Biol Eng
7
17
2013
Cyanobacteria, Alteromonas macleodii, bacterium
Automatic Mining of ENzyme DAta
Lauterbach, L; Lenz, O
Catalytic production of hydrogen peroxide and water by oxygen-tolerant [NiFe]-hydrogenase during H2 cycling in the presence of O2.
J Am Chem Soc
135
17897-905
2013
Cupriavidus necator H16
Automatic Mining of ENzyme DAta
Bowman, L; Flanagan, L; Fyfe, PK; Parkin, A; Hunter, WN; Sargent, F
How the structure of the large subunit controls function in an oxygen-tolerant [NiFe]-hydrogenase.
Biochem J
458
449-58
2014
Salmonella enterica
Automatic Mining of ENzyme DAta
Fritsch, J; Siebert, E; Priebe, J; Zebger, I; Lendzian, F; Teutloff, C; Friedrich, B; Lenz, O
Rubredoxin-related Maturation Factor Guarantees Metal Cofactor Integrity during Aerobic Biosynthesis of Membrane-bound [NiFe] Hydrogenase.
J Biol Chem
289
7982-93
2014
Cupriavidus necator H16
Automatic Mining of ENzyme DAta
Frielingsdorf, S; Fritsch, J; Schmidt, A; Hammer, M; Löwenstein, J; Siebert, E; Pelmenschikov, V; Jaenicke, T; Kalms, J; Rippers, Y; Lendzian, F; Zebger, I; Teutloff, C; Kaupp, M; Bittl, R; Hildebrandt, P; Friedrich, B; Lenz, O; Scheerer, P
Reversible [4Fe-3S] cluster morphing in an O2-tolerant [NiFe] hydrogenase.
Nat Chem Biol
2014
Cupriavidus necator
Automatic Mining of ENzyme DAta
Tai, H; Nishikawa, K; Suzuki, M; Higuchi, Y; Hirota, S
Control of the transition between Ni-C and Ni-SI(a) states by the redox state of the proximal Fe-S cluster in the catalytic cycle of [NiFe] hydrogenase.
Angew Chem Int Ed Engl
53
13817-20
2014
Electron
Automatic Mining of ENzyme DAta
Volbeda, A; Martin, L; Barbier, E; Gutiérrez-Sanz, O; De Lacey, AL; Liebgott, PP; Dementin, S; Rousset, M; Fontecilla-Camps, JC
Crystallographic studies of [NiFe]-hydrogenase mutants: towards consensus structures for the elusive unready oxidized states.
J Biol Inorg Chem
20
11-22
2015
Desulfovibrio fructosivorans
Automatic Mining of ENzyme DAta
Horch, M; Lauterbach, L; Mroginski, MA; Hildebrandt, P; Lenz, O; Zebger, I
Reversible Active Site Sulfoxygenation Can Explain the Oxygen Tolerance of a NAD(+)-Reducing [NiFe] Hydrogenase and Its Unusual Infrared Spectroscopic Properties.
J Am Chem Soc
137
2555-64
2015
Cupriavidus necator
Automatic Mining of ENzyme DAta
Abou-Hamdan, A; Ceccaldi, P; Lebrette, H; Guti Eacuterrez-Sanz, O; Richaud, P; Cournac, L; Guigliarelli, B; de Lacey, AL; L Eacuteger, C; Volbeda, A; Burlat, BE; Dementin, SE
A Threonine Stabilizes the NiC and NiR Catalytic Intermediates of [NiFe]-hydrogenase.
J Biol Chem
2015
Desulfovibrio fructosivorans
Automatic Mining of ENzyme DAta
Rodriguez-Maciá, P; Dutta, A; Lubitz, W; Shaw, WJ; Rüdiger, O
Direct Comparison of the Performance of a Bio-inspired Synthetic Nickel Catalyst and a [NiFe]-Hydrogenase, Both Covalently Attached to Electrodes.
Angew Chem Int Ed Engl
2015
Desulfovibrio vulgaris
Automatic Mining of ENzyme DAta
Vedha, SA; Velmurugan, G; Jagadeesan, R; Venuvanalingam, P
Insights from the computational studies on the oxidized as-isolated state of [NiFeSe] hydrogenase from D. vulgaris Hildenborough.
Phys Chem Chem Phys
17
20677-86
2015
Desulfovibrio vulgaris str. Hildenborough
Automatic Mining of ENzyme DAta
Ogata, H; Krämer, T; Wang, H; Schilter, D; Pelmenschikov, V; van Gastel, M; Neese, F; Rauchfuss, TB; Gee, LB; Scott, AD; Yoda, Y; Tanaka, Y; Lubitz, W; Cramer, SP
Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy.
Nat Commun
6
7890
2015
Desulfovibrio vulgaris str. 'Miyazaki F'
Automatic Mining of ENzyme DAta
Liot, Q; Constant, P
Breathing air to save energy - new insights into the ecophysiological role of high-affinity [NiFe]-hydrogenase in Streptomyces avermitilis.
Microbiologyopen
5
47-59
2016
Streptomyces avermitilis
Automatic Mining of ENzyme DAta
Kalms, J; Schmidt, A; Frielingsdorf, S; van der Linden, P; von Stetten, D; Lenz, O; Carpentier, P; Scheerer, P
Krypton Derivatization of an O2 -Tolerant Membrane-Bound [NiFe] Hydrogenase Reveals a Hydrophobic Tunnel Network for Gas Transport.
Angew Chem Int Ed Engl
2016
Cupriavidus necator
Automatic Mining of ENzyme DAta
Koo, J; Shiigi, S; Rohovie, M; Mehta, K; Swartz, JR
Characterization of [FeFe] Hydrogenase O2 Sensitivity Using a New, Physiological Approach.
J Biol Chem
2016
Clostridium pasteurianum, Electron
Automatic Mining of ENzyme DAta
Tai, H; Xu, L; Inoue, S; Nishikawa, K; Higuchi, Y; Hirota, S
Photoactivation of the Ni-SIr state to the Ni-SIa state in [NiFe] hydrogenase: FT-IR study on the light reactivity of the ready Ni-SIr state and as-isolated enzyme revisited.
Phys Chem Chem Phys
18
22025-30
2016
Desulfovibrio vulgaris str. 'Miyazaki F'
Automatic Mining of ENzyme DAta
Mirmohades, M; Adamska-Venkatesh, A; Sommer, C; Reijerse, E; Lomoth, R; Lubitz, W; Hammarström, L
Following [FeFe] Hydrogenase Active Site Intermediates by Time-Resolved Mid-IR Spectroscopy.
J Phys Chem Lett
7
3290-3
2016
Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Goy, R; Bertini, L; Rudolph, T; Lin, S; Schulz, M; Zampella, G; Dietzek, B; Schacher, FH; De Gioia, L; Sakai, K; Weigand, W
Photocatalytic Hydrogen Evolution Driven by [FeFe] Hydrogenase Models Tethered to Fluorene and Silafluorene Sensitizers.
Chemistry
23
334-345
2017
Electron
Automatic Mining of ENzyme DAta
Rodríguez-Maciá, P; Reijerse, E; Lubitz, W; Birrell, JA; Rüdiger, O
Spectroscopic Evidence of Reversible Disassembly of the [FeFe] Hydrogenase Active Site.
J Phys Chem Lett
8
3834-3839
2017
Desulfovibrio desulfuricans
Automatic Mining of ENzyme DAta
Gauquelin, C; Baffert, C; Richaud, P; Kamionka, E; Etienne, E; Guieysse, D; Girbal, L; Fourmond, V; André, I; Guigliarelli, B; Léger, C; Soucaille, P; Meynial-Salles, I
Roles of the F-domain in [FeFe] hydrogenase.
Biochim Biophys Acta
2017
Electron
Automatic Mining of ENzyme DAta
Ratzloff, MW; Wilker, MB; Mulder, DW; Lubner, CE; Hamby, H; Brown, KA; Dukovic, G; King, PW
Activation Thermodynamics and H/D Kinetic Isotope Effect of the Hox to HredH(+) Transition in [FeFe] Hydrogenase.
J Am Chem Soc
139
12879-12882
2017
Clostridium acetobutylicum, Electron
Automatic Mining of ENzyme DAta
Rumpel, S; Sommer, C; Reijerse, E; Farès, C; Lubitz, W
Direct Detection of the Terminal Hydride Intermediate in [FeFe] Hydrogenase by NMR Spectroscopy.
J Am Chem Soc
140
3863-3866
2018
Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Shiraiwa, S; So, K; Sugimoto, Y; Kitazumi, Y; Shirai, O; Nishikawa, K; Higuchi, Y; Kano, K
Reactivation of standard [NiFe]-hydrogenase and bioelectrochemical catalysis of proton reduction and hydrogen oxidation in a mediated-electron-transfer system.
Bioelectrochemistry
123
156-161
2018
Desulfovibrio vulgaris str. 'Miyazaki F'
Automatic Mining of ENzyme DAta
Rodríguez-Maciá, P; Kertess, L; Burnik, J; Birrell, JA; Hofmann, E; Lubitz, W; Happe, T; Rüdiger, O
His-ligation to the [4Fe-4S] sub-cluster tunes the catalytic bias of [FeFe] hydrogenase.
J Am Chem Soc
2018
Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Tombolelli, D; Mroginski, MA
Proton Transfer Pathways between Active Sites and Proximal Clusters in the Membrane-Bound [NiFe] Hydrogenase.
J Phys Chem B
123
3409-3420
2019
Cupriavidus necator
Automatic Mining of ENzyme DAta
Tai, H; Nishikawa, K; Higuchi, Y; Mao, ZW; Hirota, S
Cysteine SH and Glutamate COOH Contributions to [NiFe] Hydrogenase Proton Transfer Revealed by Highly Sensitive FTIR Spectroscopy.
Angew Chem Int Ed Engl
58
13285-13290
2019
Electron
Automatic Mining of ENzyme DAta
Sanchez, MLK; Sommer, C; Reijerse, E; Birrell, JA; Lubitz, W; Dyer, RB
Investigating the Kinetic Competency of CrHydA1 [FeFe] Hydrogenase Intermediate States via Time-Resolved Infrared Spectroscopy.
J Am Chem Soc
2019
Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Chongdar, N; Pawlak, K; Rüdiger, O; Reijerse, EJ; Rodríguez-Maciá, P; Lubitz, W; Birrell, JA; Ogata, H
Spectroscopic and biochemical insight into an electron-bifurcating [FeFe] hydrogenase.
J Biol Inorg Chem
25
135-149
2020
Thermotoga maritima
Automatic Mining of ENzyme DAta
Oughli, AA; Hardt, S; Rüdiger, O; Birrell, JA; Plumeré, N
Reactivation of sulfide-protected [FeFe] hydrogenase in a redox-active hydrogel.
Chem Commun (Camb)
56
9958-9961
2020
Desulfovibrio desulfuricans
Automatic Mining of ENzyme DAta
Zacarias, S; Temporão, A; Carpentier, P; van der Linden, P; Pereira, IAC; Matias, PM
Exploring the gas access routes in a [NiFeSe] hydrogenase using crystals pressurized with krypton and oxygen.
J Biol Inorg Chem
25
863-874
2020
Desulfovibrio vulgaris str. Hildenborough
Automatic Mining of ENzyme DAta
Felbek, C; Hardt, S; Papini, C; Pramanik, D; Artero, V; Fontecave, M; Fourmond, V; Plumeré, N; Léger, C
Artificial maturation of [FeFe] hydrogenase in a redox polymer film.
Chem Commun (Camb)
57
1750-1753
2021
insertion sequences, Electron
Automatic Mining of ENzyme DAta
Pelmenschikov, V; Birrell, JA; Gee, LB; Richers, CP; Reijerse, EJ; Wang, H; Arragain, S; Mishra, N; Yoda, Y; Matsuura, H; Li, L; Tamasaku, K; Rauchfuss, TB; Lubitz, W; Cramer, SP
Vibrational Perturbation of the [FeFe] Hydrogenase H-Cluster Revealed by 13C2H-ADT Labeling.
J Am Chem Soc
143
8237-8243
2021
Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Caserta, G; Pelmenschikov, V; Lorent, C; Tadjoung Waffo, AF; Katz, S; Lauterbach, L; Schoknecht, J; Wang, H; Yoda, Y; Tamasaku, K; Kaupp, M; Hildebrandt, P; Lenz, O; Cramer, SP; Zebger, I
Hydroxy-bridged resting states of a [NiFe]-hydrogenase unraveled by cryogenic vibrational spectroscopy and DFT computations.
Chem Sci
12
2189-2197
2020
Cupriavidus necator
Automatic Mining of ENzyme DAta
Shomura, Y; Yoon, KS; Nishihara, H; Higuchi, Y
Structural basis for a [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase.
Nature
479
253-6
2011
Bacteria
Automatic Mining of ENzyme DAta
Rouvre, I; Gauquelin, C; Meynial-Salles, I; Basseguy, R
Impact of the chemicals, essential for the purification process of strict Fe-hydrogenase, on the corrosion of mild steel.
Bioelectrochemistry
109
9-23
2016
Clostridium acetobutylicum
Automatic Mining of ENzyme DAta
Ratzloff, MW; Artz, JH; Mulder, DW; Collins, RT; Furtak, TE; King, PW
CO-Bridged H-Cluster Intermediates in the Catalytic Mechanism of [FeFe]-Hydrogenase CaI.
J Am Chem Soc
140
7623-7628
2018
Clostridium acetobutylicum, Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Xu, SY; He, PQ; Dewi, SZ; Zhang, XL; Ekowati, C; Liu, TJ; Huang, XH
Hydrogen-producing microflora and fe-fe hydrogenase diversities in seaweed bed associated with marine hot springs of kalianda, indonesia.
Curr Microbiol
66
499-506
2013
Sargassum sp.
Automatic Mining of ENzyme DAta
Siebert, E; Rippers, Y; Frielingsdorf, S; Fritsch, J; Schmidt, A; Kalms, J; Katz, S; Lenz, O; Scheerer, P; Paasche, L; Pelmenschikov, V; Kuhlmann, U; Mroginski, MA; Zebger, I; Hildebrandt, P
Resonance Raman Spectroscopic Analysis of the [NiFe] Active Site and the Proximal [4Fe-3S] Cluster of an O2-Tolerant Membrane-Bound Hydrogenase in the Crystalline State.
J Phys Chem B
119
13785-96
2015
Ralstonia
Automatic Mining of ENzyme DAta
Sokol, KP; Robinson, WE; Oliveira, AR; Zacarias, S; Lee, CY; Madden, C; Bassegoda, A; Hirst, J; Pereira, IAC; Reisner, E
Reversible and Selective Interconversion of Hydrogen and Carbon Dioxide into Formate by a Semiartificial Formate Hydrogenlyase Mimic.
J Am Chem Soc
141
17498-17502
2019
Electron
Automatic Mining of ENzyme DAta
Eitinger, T; Suhr, J; Moore, L; Smith, JA
Secondary transporters for nickel and cobalt ions: theme and variations.
Biometals
18
399-405
2005
Bacteria
Automatic Mining of ENzyme DAta
Ballor, NR; Paulsen, I; Leadbetter, JR
Genomic Analysis Reveals Multiple [FeFe] Hydrogenases and Hydrogen Sensors Encoded by Treponemes from the H(2)-Rich Termite Gut.
Microb Ecol
2011
metagenome, termite gut metagenome
Automatic Mining of ENzyme DAta
Akutsu, H; Takayama, Y
Functional roles of the heme architecture and its environment in tetraheme cytochrome c.
Acc Chem Res
40
171-8
2007
Electron
Automatic Mining of ENzyme DAta
Bianco, P; Haladjian, J; Bruschi, M; Guerlesquin, F
Reactivity of [Fe] and [Ni-Fe-Se] hydrogenases with their oxido-reduction partner: the tetraheme cytochrome c3.
Biochem Biophys Res Commun
189
633-9
1992
Desulfovibrio vulgaris str. Hildenborough
Automatic Mining of ENzyme DAta
Menon, NK; Robbins, J; Der Vartanian, M; Patil, D; Peck, HD; Menon, AL; Robson, RL; Przybyla, AE
Carboxy-terminal processing of the large subunit of [NiFe] hydrogenases.
FEBS Lett
331
91-5
1993
Desulfovibrio gigas
Automatic Mining of ENzyme DAta
Maier, T; Drapal, N; Thanbichler, M; Böck, A
Strep-tag II affinity purification: an approach to study intermediates of metalloenzyme biosynthesis.
Anal Biochem
259
68-73
1998
Escherichia coli
Automatic Mining of ENzyme DAta
Pierik, AJ; Roseboom, W; Happe, RP; Bagley, KA; Albracht, SP
Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases. NiFe(CN)2CO, Biology's way to activate H2.
J Biol Chem
274
3331-7
1999
Desulfovibrio vulgaris, Chromatium
Automatic Mining of ENzyme DAta
De Lacey, AL; Pardo, A; Fernández, VM; Dementin, S; Adryanczyk-Perrier, G; Hatchikian, EC; Rousset, M
FTIR spectroelectrochemical study of the activation and inactivation processes of [NiFe] hydrogenases: effects of solvent isotope replacement and site-directed mutagenesis.
J Biol Inorg Chem
9
636-42
2004
Desulfovibrio fructosivorans
Automatic Mining of ENzyme DAta
Böck, A; King, PW; Blokesch, M; Posewitz, MC
Maturation of hydrogenases.
Adv Microb Physiol
51
1-71
2006
Escherichia coli
Automatic Mining of ENzyme DAta
Abdullatypov, AV; Tsygankov, AA
Modeling three-dimensional structure of two closely related Ni-Fe hydrogenases.
Photosynth Res
2015
Desulfovibrio vulgaris, Allochromatium vinosum
Automatic Mining of ENzyme DAta
Schiffels, J; Selmer, T
A flexible toolbox to study protein-assisted metalloenzyme assembly in vitro.
Biotechnol Bioeng
112
2360-72
2015
Cupriavidus necator
Automatic Mining of ENzyme DAta
Jordan, PC; Patterson, DP; Saboda, KN; Edwards, EJ; Miettinen, HM; Basu, G; Thielges, MC; Douglas, T
Self-assembling biomolecular catalysts for hydrogen production.
Nat Chem
8
179-85
2016
Salmonella virus P22
Automatic Mining of ENzyme DAta
Duraffourg, N; Leprince, M; Crouzy, S; Hamelin, O; Usson, Y; Signor, L; Cavazza, C; Forge, V; Albertin, L
Hybrid Amyloid-Based Redox Hydrogel for Bioelectrocatalytic H2 Oxidation.
Angew Chem Int Ed Engl
60
14488-14497
2021
Electron
Automatic Mining of ENzyme DAta
Jones, AK; Sillery, E; Albracht, SP; Armstrong, FA
Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst.
Chem Commun (Camb)
866-7
2002
Allochromatium vinosum
Automatic Mining of ENzyme DAta
Jack, RL; Dubini, A; Palmer, T; Sargent, F
Common principles in the biosynthesis of diverse enzymes.
Biochem Soc Trans
33
105-7
2005
Escherichia coli
Automatic Mining of ENzyme DAta
Volbeda, A; Martin, L; Cavazza, C; Matho, M; Faber, BW; Roseboom, W; Albracht, SP; Garcin, E; Rousset, M; Fontecilla-Camps, JC
Structural differences between the ready and unready oxidized states of [NiFe] hydrogenases.
J Biol Inorg Chem
10
239-49
2005
Desulfovibrio fructosivorans
Automatic Mining of ENzyme DAta
Vincent, KA; Armstrong, FA
Investigating metalloenzyme reactions using electrochemical sweeps and steps: fine control and measurements with reactants ranging from ions to gases.
Inorg Chem
44
798-809
2005
Allochromatium vinosum
Automatic Mining of ENzyme DAta
Melis, A; Happe, T
Trails of green alga hydrogen research - from hans gaffron to new frontiers.
Photosynth Res
80
401-9
2004
Chlorophyta
Automatic Mining of ENzyme DAta
Greco, C; Bruschi, M; De Gioia, L; Ryde, U
A QM/MM investigation of the activation and catalytic mechanism of Fe-only hydrogenases.
Inorg Chem
46
5911-21
2007
Desulfovibrio desulfuricans
Automatic Mining of ENzyme DAta
Rakowski DuBois, M; DuBois, DL
The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation.
Chem Soc Rev
38
62-72
2009
Areas
Automatic Mining of ENzyme DAta
Ogata, H; Lubitz, W; Higuchi, Y
[NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism.
Dalton Trans
7577-87
2009
Desulfovibrio vulgaris str. 'Miyazaki F', bacterium
Automatic Mining of ENzyme DAta
Stripp, ST; Goldet, G; Brandmayr, C; Sanganas, O; Vincent, KA; Haumann, M; Armstrong, FA; Happe, T
How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms.
Proc Natl Acad Sci U S A
106
17331-6
2009
Chlorophyta, Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Calusinska, M; Happe, T; Joris, B; Wilmotte, A
The surprising diversity of clostridial hydrogenases: a comparative genomic perspective.
Microbiology
2010
Bacteria, Archaea
Automatic Mining of ENzyme DAta
Yang, H; Gandhi, H; Shi, L; Kreuzer, HW; Ostrom, NE; Hegg, EL
Using gas chromatography/isotope ratio mass spectrometry to determine the fractionation factor for H2 production by hydrogenases.
Rapid Commun Mass Spectrom
26
61-8
2012
Desulfovibrio fructosivorans
Automatic Mining of ENzyme DAta
Brazelton, WJ; Nelson, B; Schrenk, MO
Metagenomic evidence for h(2) oxidation and h(2) production by serpentinite-hosted subsurface microbial communities.
Front Microbiol
2
268
2012
Betaproteobacteria, Burkholderiales
Automatic Mining of ENzyme DAta
Baltazar, CS; Teixeira, VH; Soares, CM
Structural features of [NiFeSe] and [NiFe] hydrogenases determining their different properties: a computational approach.
J Biol Inorg Chem
2012
Desulfomicrobium baculatum, Desulfovibrio gigas, Dosidicus gigas
Automatic Mining of ENzyme DAta
Fritsch, J; Lenz, O; Friedrich, B
Structure, function and biosynthesis of O?-tolerant hydrogenases.
Nat Rev Microbiol
11
106-14
2013
Bacteria
Automatic Mining of ENzyme DAta
Hamon, C; Ciaccafava, A; Infossi, P; Puppo, R; Even-Hernandez, P; Lojou, E; Marchi, V
Synthesis and enzymatic photo-activity of an O2 tolerant hydrogenase-CdSe@CdS quantum rod bioconjugate.
Chem Commun (Camb)
2014
Aquifex aeolicus, bacterium
Automatic Mining of ENzyme DAta
Evans, RM; Armstrong, FA
Electrochemistry of Metalloproteins: Protein Film Electrochemistry for the Study of E. coli [NiFe]-Hydrogenase-1.
Methods Mol Biol
1122
73-94
2014
Escherichia coli
Automatic Mining of ENzyme DAta
Hou, K; Poh, HT; Fan, WY
Electrocatalytic hydrogen generation by a trithiolato-bridged dimanganese hexacarbonyl anion with a turnover frequency exceeding 40,000 s(-1).
Chem Commun (Camb)
50
6630-2
2014
Ursidae
Automatic Mining of ENzyme DAta
Adamska-Venkatesh, A; Krawietz, D; Siebel, J; Weber, K; Happe, T; Reijerse, E; Lubitz, W
New redox states observed in [FeFe] hydrogenases reveal redox coupling within the H-cluster.
J Am Chem Soc
136
11339-46
2014
Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Stiebritz, MT
MetREx: A protein design approach for the exploration of sequence-reactivity relationships in metalloenzymes.
J Comput Chem
36
553-63
2015
Desulfovibrio desulfuricans
Automatic Mining of ENzyme DAta
Khanna, N; Lindblad, P
Cyanobacterial hydrogenases and hydrogen metabolism revisited: recent progress and future prospects.
Int J Mol Sci
16
10537-61
2015
Cyanobacteria
Automatic Mining of ENzyme DAta
Noji, T; Kondo, M; Jin, T; Yazawa, T; Osuka, H; Higuchi, Y; Nango, M; Itoh, S; Dewa, T
Light-Driven Hydrogen Production by Hydrogenases and a Ru-Complex inside a Nanoporous Glass Plate under Aerobic External Conditions.
J Phys Chem Lett
5
2402-7
2014
Desulfovibrio vulgaris str. 'Miyazaki F', Electron
Automatic Mining of ENzyme DAta
Hunt, NT; Wright, JA; Pickett, C
Detection of Transient Intermediates Generated from Subsite Analogues of [FeFe] Hydrogenases.
Inorg Chem
55
399-410
2016
Electron
Automatic Mining of ENzyme DAta
Sommer, C; Adamska-Venkatesh, A; Pawlak, K; Birrell, JA; Rüdiger, O; Reijerse, EJ; Lubitz, W
Proton Coupled Electronic Rearrangement within the H-Cluster as an Essential Step in the Catalytic Cycle of [FeFe] Hydrogenases.
J Am Chem Soc
139
1440-1443
2017
Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Rodríguez-Maciá, P; Pawlak, K; Rüdiger, O; Reijerse, EJ; Lubitz, W; Birrell, JA
Inter-cluster Redox Coupling Influences Protonation at the H-cluster in [FeFe] Hydrogenases.
J Am Chem Soc
2017
Desulfovibrio desulfuricans
Automatic Mining of ENzyme DAta
Ghosh, S
Copper and palladium nanostructures: a bacteriogenic approach.
Appl Microbiol Biotechnol
2018
Escherichia coli
Automatic Mining of ENzyme DAta
Rodríguez-Maciá, P; Reijerse, EJ; van Gastel, M; DeBeer, S; Lubitz, W; Rüdiger, O; Birrell, JA
Sulfide Protects [FeFe] Hydrogenases From O2.
J Am Chem Soc
140
9346-9350
2018
Desulfovibrio desulfuricans, Chlamydomonas reinhardtii
Automatic Mining of ENzyme DAta
Schwarz, FM; Schuchmann, K; Müller, V
Hydrogenation of CO2 at ambient pressure catalyzed by a highly active thermostable biocatalyst.
Biotechnol Biofuels
11
237
2018
Thermoanaerobacter kivui
Automatic Mining of ENzyme DAta
Kawahara-Nakagawa, Y; Nishikawa, K; Nakashima, S; Inoue, S; Ohta, T; Ogura, T; Shigeta, Y; Fukutani, K; Yagi, T; Higuchi, Y
New assay method based on Raman spectroscopy for enzymes reacting with gaseous substrates.
Protein Sci
28
663-670
2019
Desulfovibrio vulgaris str. 'Miyazaki F'
Automatic Mining of ENzyme DAta
Ilina, Y; Lorent, C; Katz, S; Jeoung, JH; Shima, S; Horch, M; Zebger, I; Dobbek, H
X-ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases.
Angew Chem Int Ed Engl
58
18710-18714
2019
Methanosarcina barkeri
Automatic Mining of ENzyme DAta
Losey, NA; Poudel, S; Boyd, ES; McInerney, MJ
The Beta Subunit of Non-bifurcating NADH-Dependent [FeFe]-Hydrogenases Differs From Those of Multimeric Electron-Bifurcating [FeFe]-Hydrogenases.
Front Microbiol
11
1109
2020
Syntrophomonas wolfei, Syntrophus aciditrophicus
Automatic Mining of ENzyme DAta
Picone, N; Hogendoorn, C; Cremers, G; Poghosyan, L; Pol, A; van Alen, TA; Gagliano, AL; D'Alessandro, W; Quatrini, P; Jetten, MSM; Op den Camp, HJM; Berben, T
Geothermal Gases Shape the Microbial Community of the Volcanic Soil of Pantelleria, Italy.
mSystems
5
2020
Electron
Automatic Mining of ENzyme DAta
Hecel, A; Kola, A; Valensin, D; Kozlowski, H; Rowinska-Zyrek, M
Metal specificity of the Ni(II) and Zn(II) binding sites of the N-terminal and G-domain of E. coli HypB.
Dalton Trans
50
12635-12647
2021
insertion sequences
Automatic Mining of ENzyme DAta